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CHEEGER MANIFOLDS AND THE
CLASSIFICATION OF BIQUOTIENTS

BURT TOTARO

Abstract
We classify the biquotient manifolds which are either rational homology
spheres or Cheeger manifolds (connected sums of two rank-one symmetric
spaces). Also: there are only finitely many 2-connected biquotient manifolds
in each dimension.

A closed manifold is called a biquotient if it is diffeomorphic to
K\ G/H for some compact Lie group G with closed subgroups K and
H such that K acts freely on G/H. Every biquotient has a Riemannian
metric of nonnegative sectional curvature. In fact, almost all known
manifolds of nonnegative curvature are biquotients. The only known
closed manifolds of nonnegative sectional curvature which were not de-
fined in this way are those found by Cheeger [6] in 1973, and Grove and
Ziller [16] in 2000.

In order to understand these constructions better, this paper an-
alyzes which of the Cheeger and Grove-Ziller manifolds are actually
diffeomorphic to biquotients. In the process, we develop a general ap-
proach to the classification of biquotient manifolds. A priori, it is hard
to determine whether a given manifold is a biquotient, because there is
no obvious upper bound on the dimension of the groups involved. We
give a procedure which allows us to reduce the dimension of the groups
needed to describe a given manifold as a biquotient. A surprising ap-
plication is that Gromoll-Meyer’s example of an exotic 7-sphere which
is a biquotient [15] is the only exotic sphere of any dimension which
is a biquotient. More generally, we classify all biquotients which are
simply connected rational homology spheres of any dimension (Theo-
rem 6.1). The classification of biquotients which are simply connected
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rational homology spheres has been given independently by Kapovitch
and Ziller [17]. More generally, they classify all simply connected biquo-
tients whose rational cohomology ring is generated by one element.

Another application of our general classification theory for biquo-
tients is the precise determination of which Cheeger manifolds, the con-
nected sums of two rank-one symmetric spaces with any orientations,
are diffeomorphic to biquotients (Theorem 2.1). Some of the Cheeger
manifolds were known to be biquotients, such as CP2#−CP2 (the non-
trivial S2-bundle over S2), but we find that many of the other Cheeger
manifolds are also biquotients, such as CP2#CP2. On the other hand,
the Cheeger manifold CP4#HP2 is not diffeomorphic (or even homo-
topy equivalent) to a biquotient. The positive result that some Cheeger
manifolds such as CP2#CP2 are biquotients implies that they have
nonnegatively curved Riemannian metrics with various good properties
that were not clear from Cheeger’s construction. First, the new metrics
are real analytic. Further, the new metrics determine a natural complex-
analytic structure on the whole tangent bundle, since Aguilar [2] showed
that biquotients have this property; my paper [26] has a weaker result
which applies to all the Cheeger manifolds. Finally, the geodesic flow
for the new metrics on the Cheeger manifolds has zero topological en-
tropy. Paternain [23] proved the latter property for Cheeger’s metric on
CP2#CP2, but now we know it for some metric on a large class of the
Cheeger manifolds.

Finally, our general classification results imply that there are only
finitely many diffeomorphism classes of 2-connected biquotients in any
given dimension (Theorem 4.9). This fails for biquotients that are only
simply connected already in dimension 6, as I showed in [27]. Also,
the finiteness of 2-connected biquotients shows the distance between
biquotients and general manifolds of nonnegative sectional curvature,
since Grove and Ziller have constructed nonnegatively curved metrics
on all S3-bundles over S4, giving infinitely many homotopy types of
2-connected 7-manifolds with nonnegative sectional curvature [16].

I would like to thank Gabriel Paternain for many useful conversa-
tions. Also, thanks to Wolfgang Ziller for several references to earlier
work.

1. Notation

We begin with the equivalence of several definitions of biquotient
manifolds, pointed out by Eschenburg ([9], [11]).
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Lemma 1.1. The following properties of a closed smooth manifold
M are equivalent:

(1) M = K\G/H for some compact Lie group G with closed subgroups
K and H such that K acts freely on G/H.

(2) M = G/H for some compact Lie groups G and H together with a
homomorphism H → G × G such that H acts freely on G by left
and right translation, (g1, g2)(g) := g1gg−1

2 .

(3) M = G/H for some compact Lie groups G and H together with
a homomorphism H → (G×G)/Z(G) such that H acts freely on
G.

In (3) we are using that the center Z(G), imbedded diagonally in
G×G, acts trivially on G by left and right translation.

Proof. Clearly (1) implies (2) and (2) implies (3). We prove that
(3) implies (1). The point is that (G×G)/Z(G) acts transitively on G
with stabilizer at 1 ∈ G equal to the diagonal subgroup G/Z(G). So, if
M = G/H as in (3), then we can also describe M as in (1) by

M =
(
G/Z(G)

)\ (
(G×G)/Z(G))/H.

q.e.d.

In the paper, we use definition (3) of biquotients; that is, “a biquo-
tient G/H” will mean that G and H are compact Lie groups and we are
given a homomorphism H → (G×G)/Z(G) such that H acts freely on
G. When G and H are simply connected, such a homomorphism lifts
uniquely to G×G.

We call a connected compact Lie group simple if it is nonabelian and
every proper normal subgroup is finite. We define a simple factor of a
connected compact Lie group H to be the universal cover of a simple
normal subgroup ofH. We write Sp(2a) for the simply connected simple
group of type Ca, which topologists usually call Sp(a). The reason for
the name Sp(2a) is that we think of each compact classical group using
its standard complex representation: SU(n) is a subgroup of GL(n,C),
SO(n) is a subgroup of GL(n,C), and (with the notation here) Sp(2a)
is a subgroup of GL(2a,C).

By definition, the Dynkin index of a homomorphism H → G of
simply connected simple groups is the integer corresponding to the ho-
momorphism π3H → π3G, both groups being canonically isomorphic to
Z. Dynkin computed the Dynkin index in many cases ([8], Chapter I,
Section 2). Finally, we write UT(Sn) for the unit tangent bundle of the
n-sphere, UT(Sn) = Spin(n+ 1)/Spin(n− 1).
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2. The Cheeger manifolds that are diffeomorphic to
biquotients

By definition, a Cheeger manifold is the connected sum of any two
rank-one symmetric spaces with any orientations. The rank-one sym-
metric spaces, besides the sphere which is not interesting for this pur-
pose, are the real, complex, and quaternionic projective spaces, together
with the Cayley plane associated to the octonions. The Cheeger man-
ifolds are the only known examples of connected sums, with neither
summand a homotopy sphere and at least one summand not a rational
homology sphere, which admit metrics of nonnegative sectional curva-
ture. In fact, the conjecture that manifolds of nonnegative sectional
curvature are elliptic in the sense of Félix, Halperin, and Thomas [12]
would imply that any connected sum which admits a metric of nonnega-
tive sectional curvature must be roughly of the Cheeger type. Precisely,
a connected sum M1#M2 of simply connected manifolds which is ellip-
tic, and such that neither M1 nor M2 is a k-homology sphere for a field
k, must have the rings H∗(M1, k) and H∗(M2, k) both generated by a
single element, as follows from Lambrechts [18], Theorem 3. Combining
this with Adams and Atiyah’s results on the Hopf invariant problem [1]
shows that if a connected sum of simply connected manifolds is elliptic,
with neither summand a homotopy sphere and at least one summand
not a rational homology sphere, then both summands have the integral
cohomology ring of CPn, HPn, or CaP2.

Theorem 2.1. The following Cheeger manifolds are diffeomor
phic to biquotients. First, CPn# − CPn, HPn# − HPn, and
CaP2# − CaP2. Next, RPn#RPn, RP2n#CPn, RP4n#HPn, and
RP16#CaP2. HereRPn is non-orientable for n odd and has an orienta-
tion-reversing diffeomorphism for n even, so the orientations of the sum-
mands do not matter in these cases. Next, CP2n# −HPn, HP4# −
CaP2, and CP8# − CaP2. Finally, CPn#CPn, HPn#HPn, and
CP4e+2#HP2e+1.

The remaining Cheeger manifolds are not even homotopy equivalent
to biquotients. These are CaP2#CaP2, CP8#CaP2, HP4#CaP2,
and CP4e#HP2e.

Proof. In this section, we prove only the first, positive, statement.
We will prove the negative statement in Sections 7 and 8, after setting
up a general classification theory of biquotients.

We begin with the cases which are straightforward generalizations
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of Cheeger’s observation that CP2# − CP2 is a biquotient [6]. Let
Ak denote the standard algebra (R, C, H, or the octonions Ca) of
dimension k over R, where k = 1, 2, 4, or 8. Then, for k = 1, 2, or 4,
AkPn# − AkPn is an Sk-bundle over AkPn−1, namely the biquotient
manifold (Snk−1 × Sk)/Sk−1, where Sk−1 is a group for k = 1, 2, or 4,
acting freely on Snk−1 and by rotations on Sk. For k = 8, S7 is not a
group, but we can still describe CaP2#−CaP2 as a biquotient,

(Spin(9)× S8)/Spin(8),

where Spin(8) → Spin(9) is the standard inclusion and Spin(8) acts on
S8 ⊂ R9 by the direct sum of an 8-dimensional real spin representa-
tion and the trivial representation. Since Spin(9)/Spin(8) = S8, this
description exhibits CaP2#−CaP2 as an S8-bundle over S8.

Next, we check that the connected sum of RPn with any rank-one
symmetric space is diffeomorphic to a biquotient. As mentioned in the
theorem, orientations do not matter in this case, because RPn is non-
orientable for n odd and has an orientation-reversing diffeomorphism for
n even. For any closed n-manifold M , the connected sum RPn#M is
doubly covered byM#−M . This suggests a way to view RPnk#AkPn

as a biquotient: we replace Sk in the above description of AkPn# −
AkPn by RPk. That is:

RPn#RPn = (Sn−1 × S1)/Z/2

RP2n#CPn = (S2n−1 ×RP2)/S1

RP4n#HPn = (S4n−1 ×RP4)/S3

RP16#CaP2 = (Spin(9)×RP8)/Spin(8)

The manifolds CP2n, HP2n, and CaP2 have natural orientations,
corresponding to the highest power of any generator of H2, H4, or H8,
respectively. In fact, HPn has a natural orientation for all n ≥ 2, but
this takes more care to define. We use that the mod 3 Steenrod operation
P 1 on H∗(BSU(2),F3) acts by P 1c2 = c22, as one checks by restricting
to the torus S1 ⊂ SU(2). Since H4(HPn,Z) has a generator which is c2
of an SU(2)-bundle over HPn, this generator c2 satisfies P 1c2 = c22 in
H8(HPn,F3). It follows that (for n ≥ 2) there is a unique generator z
of H4(HPn,Z) such that P 1z = −z2 in H8(HPn,F3), namely z = −c2.
We define the natural orientation on HPn to be the one corresponding
to the highest power zn of this generator z.

Using this orientation, we can define one more class of Cheeger man-
ifolds as bundles. The manifold CP2n#−HPn is the CP2-bundle over
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HPn−1 associated to the rank-3 complex vector bundle E ⊕C, where
E is the tautological rank-2 complex vector bundle over HPn−1. Thus
CP2n# −HPn is a biquotient of the form (CP2 × S4n−1)/SU(2). We
might try to imitate this construction by viewing HP4#−CaP2 as an
HP2-bundle over S8 and CP8#−CaP2 as a CP4-bundle over S8, but
that turns out to be impossible. For these constructions, we would need
a complex vector bundle E over S8 with c4E equal to plus or minus
the class of a point in H8(S8,Z), whereas in fact every complex vector
bundle on S8 has c4E a multiple of (4− 1)! = 6, by Bott periodicity.

Instead, we construct HP4# − CaP2 as the quotient of an S11-
bundle over S8 by a free SU(2)-action. Let S− : Spin(8) → SO(8) denote
one of the two spin representations. We also write S− for the associated
Spin(9)-equivariant real vector bundle of rank 8 over Spin(9)/Spin(8) =
S8. Let N be the S11-bundle over S8 defined as the unit sphere bundle
S(S− ⊕ R4). Define a homomorphism SU(2) → Spin(9) by SU(2) ∼=
Spin(3) ⊂ Spin(9). Using this homomorphism, SU(2) acts on S8 and
acts compatibly on the vector bundle S− over S8. Let SU(2) act on
N by the given action on S8 and on the vector bundle S−, and by the
standard faithful representation VR of SU(2) on R4.

This action of SU(2) on N is free. To check this, it suffices to check
that SU(2) acts freely on the S7-bundle S(S−) over S8 and on the S3-
bundle S(R4) = S3 × S8 over S8. The second statement is clear by the
choice of SU(2)-action on R4. To prove the first statement, first note
that Spin(9) acts on S(S−) ∼= S15 by the spin representation of Spin(9).
Then use that the restriction of any spin representation of Spin(n) to
Spin(n − 1) is a sum of spin representations of Spin(n − 1). Thus the
action of SU(2) ∼= Spin(3) on S(S−) = S15 is by a sum of copies of the
4-dimensional real spin representation VR. It follows that SU(2) acts
freely on S15.

Let M be the quotient manifold N/SU(2), of dimension 16. Clearly
M is a biquotient of the form (Spin(9) × S11)/(Spin(8) × SU(2)). By
construction, M is the union of a disc bundle over S(S−)/SU(2) =
S15/SU(2) = HP3 and a disc bundle over S(R4)/SU(2) = (S8 ×
S3)/SU(2) = S8 along their common boundary, S15. SoM is diffeomor-
phic to the connected sum of HP4 and CaP2, with some orientations.
To pin down the orientations, it is convenient to compute the cohomol-
ogy ring of M . Since N is an SU(2)-equivariant S11-bundle over S8,
the quotient M is the total space of a fibration S11 →M → S8//SU(2)
up to homotopy, where S8//SU(2) = (S8 × ESU(2))/SU(2) denotes the
homotopy quotient via the given homomorphism SU(2) → Spin(9).
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We compute that

H∗(S8//SU(2),Z) = Z[y, χ(S−)]/((χ(S−) + y2)2 = 0),

where y inH4 is c2 of the standard representation V of SU(2) and χ(S−)
in H8 is the Euler class of the SU(2)-equivariant vector bundle S− over
S8, with some orientation. To check this, note that the spectral sequence
for the fibration S8 → S8//SU(2) → BSU(2) degenerates, since all the
cohomology is in even degrees. This implies that the cohomology of
S8//SU(2) has the above form, for some relation of the form χ(S−)2 +
bχ(S−)y2 + cy4 = 0 with b, c ∈ Z. Furthermore, we have TS8 ⊕R ∼= R9

as SU(2)-equivariant vector bundles on S8. It follows that

χ(TS8)2 = c8(TS8 ⊗R C) = 0

in H16(S8//SU(2),Z). Also, χ(TS8) has degree 2 on S8 while χ(S−)
has degree ±1 on S8, so we must have χ(TS8) = ±2χ(S−) + dy2 in
H8(S8//SU(2),Z) for some integer d. So (±χ(S−) + (d/2)y2)2 = 0 in
H16(S8//SU(2),Q). By what we know about the form of the relation,
d/2 must be an integer a, and we have

(±χ(S−) + ay2)2 = 0

in H16(S8//SU(2),Z). Finally, the action of SU(2) = Spin(3) ⊂ Spin(9)
on S8 preserves a 2-sphere, and so we have an inclusion BS1�S2//SU(2)
→ S8//SU(2). Let x be the standard generator of the polynomial ring
H∗(BS1,Z) in degree 2. We compute that the restriction map takes
y = c2V to −x2 and χ(S−) to ±x4, using that the restriction of the
spin representation S− to S1 = Spin(2) ⊂ Spin(8) is the direct sum of 4
copies of the standard 2-dimensional real representation of S1. There-
fore, for a suitable orientation on S−, the relation in H16(S8//SU(2),Z)
must be

(χ(S−) + y2)2 = 0.

SinceM is an S11-bundle over S8//SU(2), we have one more relation
in H12(M,Z), saying that the Euler class of this S11-bundle is zero. The
S11-bundle is S(S−⊕VR), and so its Euler class is χ(S−⊕VR) = χ(S−)y
in H12(S8//S1,Z). Thus M has cohomology ring

H∗(M,Z) = Z[y, χ(S−)]/((χ(S−) + y2)2 = 0, χ(S−)y = 0)

= Z[y, χ(S−)]/(χ(S−)2 + y4 = 0, χ(S−)y = 0).
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This is the cohomology ring of HP4#−CaP2, not of HP4#CaP2. So
the biquotient M is diffeomorphic to HP4#−CaP2.

The proof that CP8# −CaP2 is diffeomorphic to a biquotient M
is completely analogous: it is the quotient of the S9-bundle S(S−⊕R2)
over S8 by a free S1-action. Here S1 acts on S8 and on the vector bundle
S− by the homomorphism S1 ∼= Spin(2) ⊂ Spin(9), and on R2 by the
standard real representation of S1. Thus M is a biquotient of the form
(Spin(9)× S9)/(Spin(8)× S1).

Finally, we come to the most surprising examples of biquotients,
starting withCPn#CPn. The manifoldCPn has an orientation-revers-
ing diffeomorphism from n odd, and so CPn#CPn for n odd is diffeo-
morphic to CPn# −CPn. For n even, we will show that CPn#CPn

is diffeomorphic to a biquotient (S3 ×S2n−1)/(S1)2, for a free isometric
action of (S1)2 on S3 × S2n−1. The action is defined by the follow-
ing homomorphism from (S1)2 to the maximal torus (S1)2 × (S1)n of
SO(4)× SO(2n):

(x, y) → ((x, y), (xy−1, xy, . . . , xy)).

It is straightforward to check that this action of (S1)2 on S3 × S2n−1 is
free. Let M be the quotient manifold. We use that the action of (S1)2

on S3 has cohomogeneity one, with trivial generic stabilizer group and
stabilizers at the two special orbits equal to the two factors S1. It
follows that M is the union of a 2-disc bundle over S2n−1/S1 = CPn−1

(corresponding to the action of the first factor S1) and a 2-disc bundle
over S2n−1/S1 = CPn−1 (corresponding to the second S1) along their
common boundary, which is a sphere S2n−1. So M is the connected
sum of two copies of CPn, with some orientations. To work out the
orientations, it is convenient to compute the cohomology ring of M .

The quotient manifold M fits into a fibration

S3 × S2n−1 →M → (BS1)2.

Here (BS1)2 has cohomology ring Z[u, v] with u and v in H2. From
the description of the (S1)2-action, we read off that the Euler classes
of the S3-bundle and S2n−1-bundle over (BS1)2 are uv and (u− v)(u+
v)n−1. Since these form a regular sequence in the polynomial ring
H∗((BS1)2,Z), we have

H∗(M,Z) = Z[u, v]/(uv = 0, (u− v)(u+ v)n−1 = 0)
= Z[u, v]/(uv = 0, un = vn).
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This is the cohomology ring of CPn#CPn, and (for n even) not that
of CPn# − CPn. Therefore the biquotient M is diffeomorphic to
CPn#CPn.

We next show that HPn#HPn is diffeomorphic to a biquotient.
Imitating the construction for CPn#CPn might suggest identifying
HPn#HPn with a biquotient (S7 × S8n−1)/SU(2)2. That works for
n odd, but not for n even. For n even, we have to consider a more
general type of biquotient, (Sp(4) × S4n−1)/SU(2)3. Here the group
SU(2)3 acts on Sp(4) by a homomorphism SU(2)3 → Sp(4)2. To de-
fine this, first let Vi for i = 1, 2, 3 denote the standard 2-dimensional
complex representation of the ith factor of SU(2). Then the homomor-
phism SU(2)3 → Sp(4)2 is defined by (V1 ⊕ V2, V3 ⊕ C2). Also, let
W12 : SU(2)2 → SO(4) be the natural double covering, viewed as a
4-dimensional real representation of the first two copies of SU(2), and
let (V3)R : SU(2) → SO(4) be the natural real faithful representation of
the third copy of SU(2). We define the action of SU(2)3 on S4n−1 by
the homomorphism SU(2)3 → SO(8n) defined by (V3)⊕n−1

R ⊕W12.

The action of SU(2)3 on Sp(4) has cohomogeneity one, with triv-
ial generic stabilizer group and with stabilizers at the two special orbits
both isomorphic to SU(2), the first conjugate to the subgroup {(x, 1, x)}
in SU(2)3 and the second conjugate to {(1, x, x)}. These two subgroups
act freely on S4n−1, and so SU(2)3 acts freely on Sp(4) × S4n−1. Let
M be the quotient manifold. Using the description of the SU(2)3-
action on Sp(4), we see that M is the union of two disc bundles over
S4n−1/SU(2) = HPn−1 along their common boundary, S4n−1. There-
fore M is the connected sum of two copies of HPn, with some orienta-
tions.

To determine the relevant orientations, it suffices for n even to com-
pute the cohomology ring of M . For n odd, the manifolds HPn#HPn

and HPn#−HPn have isomorphic cohomology rings. In that case we
will also need a mod 3 Steenrod operation to see that M is diffeomor-
phic to HPn#HPn rather than HPn#−HPn. First, we compute the
cohomology ring of the homotopy quotient Sp(4)//SU(2)3, with respect
to the above action of SU(2)3 on Sp(4). Write zi = −c2Vi, for i = 1, 2, 3,
which are generators in H4 of the polynomial ring H∗(BSU(2)3,Z). The
generators c2 and c4 of H∗(BSp(4),Z) pull back under the left homo-
morphism SU(2)3 → Sp(4) to −z1 − z2 and z1z2, and under the right
homomorphism SU(2)3 → Sp(4) to −z3 and 0. Therefore, using the
Eilenberg-Moore spectral sequence as suggested by Singhof [25], the co-
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homology of Sp(4)//SU(2)3 is

Z[z1, z2, z3]/(z1 + z2 = z3, z1z2 = 0).

The manifold M is an S4n−1-bundle over Sp(4)//SU(2)3, up to homo-
topy. The Euler class of this bundle, (V3)⊕n−1

R ⊕W12, is±(−z3)n−1(−z1+
z2), and so M has cohomology ring

Z[z1, z2, z3]/(z1 + z2 = z3, z1z2 = 0, zn−1
3 (z1 − z2) = 0)

= Z[z1, z2]/(z1z2 = 0, zn1 = zn2 ).

This is the cohomology ring of HPn#HPn, and for n even it is not the
cohomology ring ofHPn#−HPn. SoM is diffeomorphic toHPn#HPn

for n even. For n odd, n ≥ 3, we also need to observe that the classes
zi are distinguished from their negatives by the fact that P 1zi = −z2

i in
H8(M,F3). By definition of the natural orientation on HPn for n ≥ 2,
this means that M is diffeomorphic to HPn#HPn for all n ≥ 2, not to
HPn#−HPn. The case n = 1 is trivial, since HPn#HPn = S4#S4 =
S4.

The last Cheeger manifolds which are diffeomorphic to biquotients
are the manifolds CP4e+2#HP2e+1. The relevant biquotient M has
the form M = (S5 × S8e+3)/(S1 × SU(2)). To be more explicit, let
L be the standard 1-dimensional complex representation of S1, and
let V be the standard 2-dimensional complex representation of SU(2).
Then we let S1 × SU(2) act on S5 as the unit sphere in V ⊕ L, and on
S4n−1 as the unit sphere in (V ⊗C L)⊕2e+1. The action of S1 × SU(2)
on S5 has cohomogeneity one, with trivial generic stabilizer and with
stabilizers at the two special orbits conjugate to the two factors S1 and
SU(2), respectively. Both of these subgroups act freely on S8e+3, and so
S1 × SU(2) acts freely on S5 × S8e+3. Let M be the quotient manifold.

From the action of S1 × SU(2) on S5, we see that M is the union
of a disc bundle over S8e+3/S1 = CP4e+1 and a disc bundle over
S8e+3/SU(2) = HP2e along their common boundary, S8e+3. It fol-
lows that M is the connected sum of CP4e+2 and HP2e+1 with some
orientations.

To show that M is diffeomorphic to CP4e+2#HP2e+1 rather than
to CP4e+2#−HP2e+1, we compute the cohomology ring and a mod 3
Steenrod operation onM . SinceM = S(V ⊕L)×S((V ⊗L)⊕2e+1)/(S1×
SU(2)), we can view M as an (S5 × S8e+3)-bundle over BS1 ×BSU(2).
Here BS1 × BSU(2) has cohomology ring Z[x, z], where we let x =
c1L and z = −c2V . The vector bundles V ⊕ L and (V ⊗ L)⊕2e+1 on
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BS1 × BSU(2) have Euler classes (−z)x and (x2 − z)2e+1. So M has
cohomology ring

Z[x, z]/(−xz = 0, (x2 − z)2e+1 = 0)

= Z[x, z]/(xz = 0, x4e+2 = z2e+1).

Here the element z in H4(M,Z) is distinguished from its negative, for
e ≥ 1, by the property that P 1z = −z2 in H8(M,F3). By definition
of the natural orientation on HP2e+1 for e ≥ 1, M is diffeomorphic to
CP4e+2#HP2e+1, not to CP4e+2#−HP2e+1.

By contrast, the analogous calculation of the cohomology ring shows
that the biquotient

(S(V ⊕ L)× S((V ⊗ L)⊕2e))/(S1 × SU(2))

is diffeomorphic to CP4e# −HP2e, not to CP4e#HP2e. This will be
used in Section 8.

3. Simplifying the description of a given biquotient manifold

Here is an elementary but essential beginning to our simplification of
the description of a given biquotient manifold. (Throughout the paper,
G and H will denote compact Lie groups.)

Lemma 3.1. Let M be a simply connected biquotient manifold.
Then we can write M = G/H for some simply connected group G
and connected group H acting on G by a homomorphism H → (G ×
G)/Z(G). If M is 2-connected, then H is simply connected and H acts
on G by a homomorphism H → G×G.

Proof. Since M is connected, we can write M as a biquotient G/H
with G connected. SinceM is simply connected, the long exact sequence
of the fibration H → G→M ,

π1H → π1G→ π1M → π0H → π0G,

shows that H is connected and π1H → π1G is surjective. Let C be the
kernel of π1H → π1G, a finitely generated abelian group.

Let G̃ and H̃ be the universal covers of G and H. We can identify
π1H with the kernel of H̃ → H, and so C is a central subgroup of H̃.
We have G̃ ∼= KG ×Ra and H̃ ∼= KH ×Rb for some simply connected
compact Lie groups KG and KH . The given homomorphism H →
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(G × G)/Z(G) lifts to a homomorphism H̃ → G̃ × G̃. The resulting
action of H̃ on G̃ is trivial on the subgroup C, and H̃/C acts freely on
G̃ with M = G̃/(H̃/C).

Here G̃ = KG ×Ra, and the action of H̃/C on G̃ is the product of
an action on KG and an action on Ra. Furthermore, since the group Ra

is abelian, H̃/C acts on Ra by translations (left or right translations
being the same). Since H̃/C is a connected group and the quotient is
compact, H̃/C must act transitively on Ra. Let L be the kernel of the
action of H̃/C on Ra. Then L must act freely on KG, withM = KG/L.
Here KG is a simply connected compact Lie group. Also, L must be
connected by the long exact sequence

π1M → π0L→ π0KG.

Finally, if M is 2-connected, then the same long exact sequence
shows that L is simply connected. In this case, the homomorphism
L→ (KG×KG)/Z(G) lifts uniquely to a homomorphism L→ KG×KG.
q.e.d.

Since we intend to study simply connected biquotient manifolds,
Lemma 3.1 tells us that we can assume G is simply connected, and
thus a product of simply connected simple groups. Thus, much of the
complexity of more general compact Lie groups is avoided.

The main method of simplifying the description of a given biquotient
is the following easy observation.

Lemma 3.2. Let H be a compact Lie group acting on manifolds
X1 and X2 such that H acts transitively on X1 and H acts freely on
X1 ×X2. Let K ⊂ H be the stabilizer of some point in X1. Then the
quotient manifold (X1×X2)/H is diffeomorphic to X2/K, where K acts
freely on X2 by the restriction of the action of H.

Proof. This is clear by identifying X1 with H/K. q.e.d.

Applying this method of simplification to biquotients gives the fol-
lowing fundamental result.

Lemma 3.3. Let M be a simply connected biquotient manifold.
Then we can write M = G/H such that G is simply connected, H is
connected, and H does not act transitively on any simple factor of G.

Proof. By Lemma 3.1, we can write M as a biquotient G/H with
G simply connected and H connected. If H acts transitively on some
simple factor of G, then Lemma 3.2 allows us to remove that factor of G
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while replacing H by a subgroup. The exact sequence π1M → π0H →
π0G shows that the new subgroup H is still connected. By induction
on the number of simple factors of G, we can arrange that H does not
act transitively on any simple factor of G. q.e.d.

Convention 3.4. From now on, we will only consider simply con-
nected biquotient manifolds, and in writing M = G/H we will assume
that G and H satisfy the properties listed in Lemma 3.3.

4. Bounding G in terms of M

As mentioned in Convention 3.4, for the rest of the paper we only
consider simply connected biquotient manifolds. We can and do assume
that every such manifold M is written M = G/H with G simply con-
nected, H connected, and H not acting transitively on any simple factor
of G. In this section, we will show how these properties determine G up
to finitely many possibilities in terms of the rational homotopy groups
of M .

The following lemma will not be needed in this section, but is in-
cluded here for later use.

Lemma 4.1. Let M = G/H be a simply connected biquotient
manifold. If in addition the rational homotopy group π3MQ is zero, then
each simple factor H1 of H acts trivially on all factors of G isomorphic
to H1.

Proof. By the long exact sequence of the fibration H → G → M ,
since π3MQ = 0, the homomorphism π3HQ → π3GQ is surjective. In
particular, for each simple factor G1 of G, π3HQ → π3(G1)Q is surjec-
tive. Suppose that some simple factor H1 of H which is isomorphic to
G1 acts nontrivially on G1; we will derive a contradiction. Here, a priori,
H1 can act by left and right translation on G1. If H1 acts nontrivially
on only one side of G1, thus by a nontrivial homomorphism H1 → G1,
then this homomorphism must be an isomorphism, since H1 is simple.
In particular, H1 acts transitively on G1, which contradicts Conven-
tion 3.4. Therefore, H1 must act nontrivially on both sides of G1. Then
the two homomorphisms from H1 to G1 must both be isomorphisms,
using simplicity of H1 again. We now use that any automorphism of
a simply connected simple group G1 acts trivially on π3(G1) ∼= Z, as
follows from the proof of this isomorphism using the Killing form. The
homomorphism π3(H1)Q → π3(G1)Q is the difference of the homomor-
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phisms given by the two homomorphisms H1 → G1, and so it is zero.
Furthermore, since the two homomorphisms H1 → G1 both have only
finite centralizer, there is no room for the rest of H to act on G1; in
other words, H acts on G1 through a quotient group isogenous to H1. It
follows that the homomorphism π3HQ → π3(G1)Q is zero, contradicting
what we know from π3MQ = 0. Thus, each simple factor H1 of H must
act trivially on simple factors of G isomorphic to H1. q.e.d.

To find more precise information on G, we need the classification of
the simple compact Lie groups. In particular, we use that a simple group
G has rational homotopy groups concentrated in odd degrees 2d − 1,
and we call the numbers d that occur the degrees of G. Particularly
important for us is the maximal degree of G, which we call d(G). It is
also called the Coxeter number of G. The degrees of G are well-known
in many contexts: we can also say that H∗(G,Q) is an exterior algebra
with generators in degrees 2d − 1 where d runs over the degrees of G,
or that the degrees of G are the degrees of the generators of the ring of
invariants of the Weyl group acting on its reflection representation. We
tabulate the degrees of the simple groups here, following Bourbaki [5]
or Gorbatsevich-Onishchik ([14], Table 1, p. 127). To avoid repetitions,
one can assume that Al has l ≥ 1, Bl has l ≥ 3, Cl has l ≥ 2, and Dl

has l ≥ 4.

Table 4.2

Al : 2, 3, . . . , l + 1
Bl : 2, 4, 6, . . . , 2l
Cl : 2, 4, 6, . . . , 2l
Dl : 2, 4, 6, . . . , 2l − 2; l
G2 : 2, 6
F4 : 2, 6, 8, 12
E6 : 2, 5, 6, 8, 9, 12
E7 : 2, 6, 8, 10, 12, 14, 18
E8 : 2, 8, 12, 14, 18, 20, 24, 30.

Using Table 4.2 and the known low-dimensional representations of
each group, Onishchik proved the following result [20]. He later gave a
more systematic proof, using reflection groups [21].

Lemma 4.3. Let H → G be a nontrivial homomorphism of simply
connected simple groups. Then the maximal degrees satisfy d(H) ≤
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d(G). Moreover, if d(H) = d(G), then either H → G is an isomorphism
or G/H is one of the following homogeneous spaces. On the right we
show the degrees of G and H.

Spin(2n)/Spin(2n− 1)
= S2n−1, n ≥ 4 2, 4, 6, . . . , 2n− 2;n 2, 4, 6, . . . , 2n− 2
SU(2n)/Sp(2n), n ≥ 2 2, 3, 4, . . . , 2n 2, 4, 6, . . . 2n
Spin(7)/G2 = S7 2, 4, 6 2, 6
Spin(8)/G2 = S7 × S7 2, 4, 4, 6 2, 6
E6/F4 2, 5, 6, 8, 9, 12 2, 6, 8, 12.

In all these cases except Spin(8)/Spin(7) = S7, there is a unique
conjugacy class of nontrivial homomorphisms H → G; in the case
Spin(8)/Spin(7), there are three conjugacy classes which are equivalent
under outer automorphisms of Spin(8). Also, in all the above cases, the
centralizer of H in G is finite.

The following result shows how to apply Lemma 4.3 to biquotients
M = G/H, although it is only a step on the way to the more precise
Theorem 4.8. For a simple factor G1 of G, we say that a degree d of G1

is killed by H if the homomorphism π2d−1HQ → π2d−1(G1)Q associated
to the action of H on G1 is nonzero.

Lemma 4.4. Let M = G/H be a simply connected biquotient,
written according to Convention 3.4. Let G1 be a simple factor of G
such that the maximal degree of G1 is killed by H. Then either there is a
simple factor H1 of H such that H1 acts nontrivially on exactly one side
of G1 by one of the homomorphisms in Lemma 4.3, so that G1/H1 is one
of Spin(2n)/Spin(2n − 1) = S2n−1, SU(2n)/Sp(2n), Spin(7)/G2 = S7,
Spin(8)/G2 = S7 × S7, or E6/F4; or G1 is isomorphic to SU(2n + 1)
for some n and there is a simple factor H1 of H also isomorphic to
SU(2n + 1) which acts on G1 by h(g) = hght. The SU(2n + 1) case
cannot occur if π3MQ = 0.

Proof. We are given a simple factor G1 of G such that the maximal
degree of G1 is killed by H. It follows that there must be a simple factor
H1 of H which kills the maximal degree d of G1. Since H1 is simply
connected, the action of H1 on G1 is given by a homomorphism H1 →
G1 ×G1, and the resulting linear map π2d−1(H1)Q → π2d−1(G1)Q ∼= Q
is nonzero. This linear map is the difference of the two linear maps asso-
ciated to the two homomorphisms H1 → G1 (on the left and right), so at
least one of those two linear maps is nonzero. By Lemma 4.3, eitherH1 is
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isomorphic to G1 or (G1, H1) is one of the pairs (Spin(2n),Spin(2n−1)),
(SU(2n),Sp(2n)), (Spin(7), G2), (Spin(8), G2), or (E6, F4).

Suppose first that (G1, H1) is one of these 5 pairs. If H1 acts non-
trivially on both sides of G1, then in all cases except (Spin(8),Spin(7)),
Lemma 4.3 implies that the two homomorphisms H1 → G1 are conju-
gate, so the resulting map π∗(H1)Q → π∗(G1)Q (the difference of the
left and right maps) is 0, contradicting the fact that H1 kills the top
degree of G1. Even in the case (Spin(8),Spin(7)), we compute that the
outer automorphism group of Spin(8) acts trivially on the top degree,
6, of Spin(8), that is, on π11Spin(8)Q. It follows that if Spin(7) acts
nontrivially on both sides of Spin(8), then the left and right homomor-
phisms Spin(7) → Spin(8) give the same linear map into the top degree
of Spin(8), and so the action of Spin(7) of Spin(8) cannot kill the top
degree of Spin(8), a contradiction. Thus, in all these cases, H1 acts
nontrivially on only one side of G1, by one of the homomorphisms in
Lemma 4.3. The lemma is proved in this case.

The remaining case is where H1 is isomorphic to G1. Clearly this
cannot occur if π3MQ = 0, by Lemma 4.1. In general, if H1 acts non-
trivially on only one side of G1, then it must act by an isomorphism
H1 → G1. So H acts transitively on G1, contrary to Convention 3.4.
Therefore H1 must act nontrivially on both sides of G1, clearly by two
isomorphisms H1 → G1. We are given that H1 kills the top degree of
G1, so these two isomorphisms H1 → G1 must give different linear maps
into the top degree of π∗(G1)Q. So the outer automorphism group of G1

must act nontrivially on the top degree of G1. Of the simply connected
simple groups, only An, Dn, and E6 have nontrivial outer automorphism
group, and only in the case G1 = SU(2n+ 1) = A2n does the outer au-
tomorphism group act nontrivially on the top degree of G1. (The outer
automorphism group Z/2 of SU(n), n ≥ 3, acts by the identity on the
even degrees of SU(n) and by −1 on the odd degrees. A topological
way to see this is to identify π∗GQ with the dual to the vector space
H>0(BG,Q)/(H>0 ·H>0), and use in the case G = SU(n) that the outer
automorphism E → E∗ acts on Chern classes by ci → (−1)ici.) So we
must have G1 = SU(2n+1), with H1 = SU(2n+1) acting on G1 by the
identity on one side and by the outer automorphism x → (xt)−1 on the
other. q.e.d.

In order to have strong restrictions on the simple factors of G in
terms of the rational homotopy groups ofM = G/H, we need to analyze
more completely the way H acts on simple factors of G isomorphic to
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Spin(2n), SU(2a), Spin(7), Spin(8), or E6. In analogy with Lemmas 4.3
and 4.4, we will first formulate a general statement on the subgroups
of these groups, and then apply it to biquotients. Before that, we need
some simple topological results.

Lemma 4.5. Let H and G be connected compact Lie groups, and
let f : H → G be any continuous map. If f∗ : π∗HQ → π∗GQ is
surjective, then f is surjective.

Proof. BothH andG have the rational homotopy type of products of
odd-dimensional spheres. So H∗(H,Q) and H∗(G,Q) are both exterior
algebras, and the assumption means that the homomorphism

f∗ : H>0(G,Q)/(H>0 ·H>0) → H>0(H,Q)/(H>0 ·H>0)

is injective. ThusH∗(H,Q) is the exterior algebra generated by the gen-
erators of H∗(G,Q) together with some other generators. So H∗(G,Q)
→ H∗(H,Q) is injective. Since G is a closed orientable manifold, it
follows that H → G is surjective. q.e.d.

Corollary 4.6. Let H and G be connected compact Lie groups,
with an action of H on G by a homomorphism H → (G×G)/Z(G). If
the associated homomorphism π∗HQ → π∗GQ is surjective, then H acts
transitively on G.

Proof. We are given that the homomorphism associated to the orbit
map f : H → G of some point in G is surjective on rational homo-
topy groups. By Lemma 4.5, H → G is surjective. That is, H acts
transitively on G. q.e.d.

We now apply Corollary 4.6 to get information on the subgroups of
the groups occurring in Lemma 4.3. (We also use the classification of
simple Lie groups in the following proof, but it is more pleasant to use
Corollary 4.6 when possible.)

Lemma 4.7. Let ϕ : H → Spin(2n) be a homomorphism from a
simply connected simple group such that the homomorphism

π2n−1HQ → π2n−1Spin(2n)Q/π2n−1Spin(2n− 1)Q ∼= Q

is not zero. Then H acts transitively on the sphere Spin(2n)/Spin(2n−1)
= S2n−1.

Next, let G/K be one of the other homogeneous spaces from Lem-
ma 4.3: SU(2n)/Sp(2n) with n ≥ 2, Spin(7)/G2 = S7, Spin(8)/G2 =
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S7 × S7, or E6/F4. Let H → G be a homomorphism from a simply
connected compact Lie group H which kills the second-largest degree of
G. (In the case G/K = Spin(8)/G2, where Spin(8) has degrees 2, 4, 4, 6,
we assume that both degrees 4 of Spin(8) are killed by H.) Then H acts
transitively on G/K.

Proof. In the cases where G/K is one of Spin(2n)/Spin(2n − 1) =
S2n−1, Spin(7)/G2 = S7, or Spin(8)/G2 = S7 × S7, the assumption
implies that the action of H×K on G is surjective on rational homotopy
groups. By Corollary 4.6, H ×K acts transitively on G. Equivalently,
H acts transitively on G/K.

Next, let G/K = SU(2n)/Sp(2n), n ≥ 2, and suppose that H kills
the second-largest degree, 2n− 1, of SU(2n). We can replace H by one
of its simple factors without changing this property. If H is isomorphic
to G, then the homomorphism H → G is an isomorphism, and so H
acts transitively on G/K. Otherwise, by Lemma 4.3, H has maximal
degree at most that of SU(2n), which is 2n, and if equality holds then
H = Sp(2n). But Sp(2n) does not kill the degree 2n − 1 of SU(2n).
So H must have maximal degree 2n− 1. By Table 4.2, the only simple
group with maximal degree an odd number is H = SU(2n − 1). Since
n ≥ 2, any nontrivial homomorphism SU(2n−1) → SU(2n) is equivalent
to the standard inclusion by some automorphism of SU(2n− 1). Then
SU(2n − 1) acts transitively on SU(2n)/Sp(2n), because Sp(2n) acts
transitively on SU(2n)/SU(2n− 1) = S4n−1.

Finally, suppose that G/K = E6/F4 and H kills the second-largest
degree, 9, of E6. We can replace H by one of its simple factors without
changing this property. Then H has rank at most the rank 6 of E6 and
has 9 as a degree. By Table 4.2, it follows that H is isomorphic to E6.
So the given homomorphism H → E6 must be an isomorphism, and in
particular H acts transitively on E6/F4. q.e.d.

We now apply this result on subgroups to deduce strong information
on the classification of biquotient manifolds. For a given biquotientM =
G/H, we say that a given simple factor Gi of G contributes degree di
to M if the homomorphism π2di−1HQ → π2di−1(Gi)Q is not surjective.
If G =

∏
Gi and every factor Gi contributes some degree di to M ,

then π2d−1MQ = π2d−1GQ/π2d−1HQ has dimension at least equal to
the number of simple factors Gi with di = d.

Theorem 4.8. Let M = G/H be a simply connected biquotient
manifold, written using Convention 3.4. Let G1 be any simple factor of
G. Then at least one of the following holds:
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(1) G1 contributes its maximal degree to M .

(2) G1 contributes its second-largest degree toM , and there is a simple
factor H1 of G1 which acts nontrivially on exactly one side of
G1, with G1/H1 isomorphic to one of the homogeneous spaces
SU(2n)/Sp(2n) with n ≥ 2, Spin(7)/G2 = S7, Spin(8)/G2 = S7 ×
S7, or E6/F4. The second-largest degree of G1 is, respectively,
2a − 1, 4, 4, or 9. (In the case G1 = Spin(8), which has degrees
2, 4, 4, 6, the claim is only that G1 contributes at least one degree
4 to M.)

(3) G1
∼= Spin(2n) with n ≥ 4 contributes its degree n to M , and

there is a simple factor H1
∼= Spin(2n − 1) which acts nontriv-

ially on exactly one side of G1, by the standard inclusion, with
Spin(2n)/Spin(2n− 1) = S2n−1.

(4) G1
∼= SU(2n+1) contributes degrees 2, 4, 6, . . . , 2n toM , and there

is a simple factor H1
∼= SU(2n + 1) of G1 which acts on G1 by

h(g) = hght.

Proof. Let G1 be a simple factor of G. Suppose that (1) does not
hold, in other words that the maximal degree of G1 is killed by H. By
Lemma 4.4, there is a simple factor H1 of H such that either H1 acts
nontrivially on exactly one side of G1 by one of the homomorphisms
listed in (2) or (3) above, or G1 = H1 = SU(2n + 1) and H1 acts on
G1 as in (4). The remaining point is to show that G1 contributes the
degrees to M that we have claimed.

In cases (2) and (3), H1 has finite centralizer in G1 by Lemma 4.3, so
the rest ofH can act on G1 only on the other side fromH1. SinceH1 and
the rest of H together do not act transitively on G1, by Convention 3.4,
Lemma 4.7 shows that G1 contributes its degree n to M if G1/H1 =
Spin(2n)/Spin(2n − 1) = S2n−1, or its second-largest degree to M if
G1/H1 is one of SU(2n)/Sp(2n), Spin(7)/G2 = S7, Spin(8)/G2 = S7 ×
S7, or E6/F4.

In case (4), since H1 = SU(2n + 1) acts with finite centralizer on
both sides of G1 = SU(2n + 1), no other factor of H can act on G1.
So the image of π∗HQ → π∗(G1)Q is equal to the image of π∗(H1)Q →
π∗(G1)Q. This homomorphism is the difference of the identity map on
π∗(G1)Q with the map given by the outer automorphism g → (gt)−1,
which acts by 1 on the even degrees and by −1 on the odd degrees (as
shown in the proof of Lemma 4.4). So the image of π2d−1(H1)Q →
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π2d−1(G1)Q is zero for d even. That is, G1 contributes all its even
degrees 2, 4, . . . , 2n to M . q.e.d.

Theorem 4.8 implies the following important qualitative statement
on the classification of biquotients. The analogous result for homoge-
neous spaces is easy and probably well-known. It is perhaps surprising
that the following statement requires the detailed classification work we
have done in this section, but that seems to be true, at least for now.

Theorem 4.9. There are only finitely many diffeomorphism classes
of 2-connected biquotient manifolds of a given dimension.

Theorem 4.9 is vaguely reminiscent of the Petrunin-Tuschmann the-
orem, which says in particular that for any number C, there are only
finitely many diffeomorphism classes of 2-connected closed Riemannian
manifolds with curvature 0 ≤ K ≤ C and diameter 1 [24]. But there
is probably no way to actually deduce Theorem 4.9 from the Petrunin-
Tuschmann theorem, since there is no obvious upper bound on the cur-
vature of 2-connected biquotients until one goes through the proof of
Theorem 4.9. In fact, the discussion after Theorem 1.1 in my paper
[27] shows that there can be no upper bound on the curvature of simply
connected biquotients of dimension 6, if one fixes their diameter to be
1.

Proof of Theorem 4.9. Any biquotient manifoldM is rationally ellip-
tic; that is, all but finitely many of the rational homotopy groups of M
are zero. So, writing n for the dimension of M , the odd-degree rational
homotopy groups π2d−1MQ are zero for d > n, and the total dimension
of the odd-degree rational homotopy groups ofM is at most n, by Fried-
lander and Halperin ([13], p. 434). SinceM is simply connected, we can
write M as a biquotient G/H according to Convention 3.4. In particu-
lar, G is simply connected and, sinceM is 2-connected, H is also simply
connected. The essential point is Theorem 4.8, which implies that each
simple factor of G contributes at least one degree to M , and that one
such degree is at least half the maximal degree of G. Therefore the
number of simple factors of G is at most the total dimension of πoddMQ

and hence at most n, and the maximal degree of each simple factor of
G is at most 2n. Thus G, being a product of simply connected simple
groups, is determined up to finitely many possibilities by n. Also, H is
a simply connected group of dimension at most that of G, so H and the
homomorphism H → (G×G)/Z(G) (up to conjugacy) are determined
up to finitely many possibilities. q.e.d.
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5. Further general results on the classification of biquotients

In this section we continue the previous section’s method: we classify
subgroups of compact Lie groups with certain properties, and apply the
results to the classification of biquotients. The main result of this section
is Theorem 5.3, which describes the possible simple factors of G in a
biquotient M = G/H which contribute only their top degree to M .
(This terminology is defined before Theorem 4.8.)

We begin by stating a classification of certain subgroups of Spin(2n).

Lemma 5.1. Let ϕ : H → Spin(2n), n ≥ 4, be a homomorphism
from a simply connected simple group H such that the linear map

π2n−1HQ → π2n−1Spin(2n)Q/π2n−1Spin(2n− 1)Q ∼= Q
is not zero. Then ϕ is either an isomorphism or one of the following ho-
momorphisms, up to the standard Z/2 group of outer automorphisms of
Spin(2n): SU(n) ↪→ Spin(2n), Sp(2a) ↪→ Spin(4a), the spin representa-
tion Spin(7) ↪→ Spin(8), or the spin representation Spin(9) ↪→ Spin(16).

This is straightforward to prove using the known degrees and low-
dimensional representations of all the simple groups. Alternatively, we
can deduce it from Borel’s classification of groups which act linearly
and transitively on the sphere, in the odd-dimensional case [4]. Namely,
the hypothesis of Lemma 5.1 means that the action of H on S2n−1

associated to the homomorphism H → Spin(2n) has orbit map H →
S2n−1 such that π2n−1HQ → π2n−1S

2n−1
Q

∼= Q is not zero. It follows
that H → S2n−1 is surjective, in other words that H acts transitively
on S2n−1. Then Lemma 5.1 follows from Borel’s classification.

The subgroups we classify next are the simple subgroups H of any
simple group G such that the maximal degree ofH is at least the second-
largest degree of G. This is closely related to two classifications by
Onishchik. First, he classified the simple subgroups H ⊂ G such that
dimQ πodd(G/H)Q = 1 ([14], Table 3, p. 185), that is, H kills all but one
degree of G; these make up the first part of the list in Lemma 5.2. Next,
he classified the simple subgroups H ⊂ G such that d(H) ≥ d(G) − 2
([22], Table 7.2, p. 195); it turns out that these include all the subgroups
on the second part the list in Lemma 5.2.

Lemma 5.2. Let H → G be a nontrivial homomorphism of simply
connected simple groups such that the maximal degree of H is at least
the second-largest degree of G and is less than the maximal degree of G.
Then G/H is isomorphic to one of the following homogeneous spaces:
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On the left is the Dynkin index of the homomorphism H → G. On the
right are shown the degrees of G not occurring in H, and the degrees
of H not occurring in G, in both cases with multiplicities. In the last
column is the centralizer of H in G, written modulo finite groups.

1 SU(n)/SU(n− 1)
= S2n−1, n ≥ 3 n S1

1 Sp(2n)/Sp(2n− 2)
= S4n−1, n ≥ 2 2n A1

1 Spin(2n+ 1)/Spin(2n)
= S2n, n ≥ 3 2n n 1

1 Spin(2n+ 1)/Spin(2n− 1)
= UT(S2n), n ≥ 3 2n S1

2 Sp(4)/SU(2) = UT(S4) 4 S1

10 Sp(4)/SU(2) 4 1
4 SU(3)/SO(3) 3 1
1 Spin(9)/Spin(7) = S15 8 1
1 G2/SU(3) = S6 6 3 1
1 G2/SU(2) = UT(S6) 6 A1

3 G2/SU(2) 6 A1

4 G2/SO(3) 6 1
28 G2/SO(3) 6 1
1 F4/Spin(9) = CaP2 12 4 1

1 Spin(2n)/Spin(2n− 2)
= UT(S2n−1), n ≥ 4 n, 2n− 2 n− 1 S1

1 Spin(2n)/Spin(2n− 3), n ≥ 4 n, 2n− 2 A1

1 SU(2n+ 1)/Sp(2n), n ≥ 2 3, 5, . . . , 2n+ 1 S1

2 SU(2n+ 1)/SO(2n+ 1), n ≥ 2 3, 5, . . . , 2n+ 1 1
1 Spin(10)/Spin(7) 5, 8 S1

2 SU(7)/G2 3, 4, 5, 7 1
1 Spin(9)/G2 4, 8 S1

1 Spin(10)/G2 4, 5, 8 A1.

The proof is straightforward for G classical, using the known low-
dimensional representations of each simple group, or alternatively the
results by Onishchik mentioned above. For G exceptional, more than
enough information is provided by Dynkin’s paper on the subgroups of
the exceptional groups [8]. For example, Dynkin’s Table 16 classifies
the A1 subgroups of G2. Notice that the listings for Spin(9)/Spin(7) =
S15 and Spin(10)/Spin(7) refer to the spin representation of Spin(7);
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these spaces are different from the spaces Spin(2n+ 1)/Spin(2n− 1) =
UT(S2n) for n = 4 and Spin(2n)/Spin(2n−3) for n = 5. Also, there are
three conjugacy classes of nontrivial homomorphisms SU(2) → Sp(4),
where we write V for the standard representation of SU(2): V ⊕ C2,
where Sp(4)/SU(2) = Sp(4)/Sp(2) = S7, which has Dynkin index 1;
V ⊕ V , where Sp(4)/SU(2) = Spin(5)/Spin(3) = UT(S4), which has
Dynkin index 2; and S3V , which has Dynkin index 10.

We now apply Lemma 5.2 to the classification of biquotients. To-
gether with Theorem 4.8, the following theorem will be our most im-
portant tool in the classification of biquotients.

Theorem 5.3. Let M = G/H be a simply connected biquotient,
written according to Convention 3.4. Let G1 be a simple factor of G
which contributes only its top degree to M . Then at least one of the
following holds:

(1) G1 is isomorphic to SU(2), which has degree 2.

(2) G1 is a rank-2 group SU(3), Sp(4), or G2, with top degree 3, 4, 6
respectively, and there is a simple factor H1

∼= SU(2) of H which
acts nontrivially on G1.

(3) There is a simple factor H1 of H such that H1 acts nontrivially
on exactly one side of G1 and G1/H1 is one of the homogeneous
spaces in the first part of Lemma 5.2’s list.

(4) There are two simple factors H1 and H2 of H which act nontriv-
ially on the two sides of G1 in one of the following ways, up to
switching H1 and H2: G1 = Spin(2n), n ≥ 4, H1 is Spin(2n− 2)
or Spin(2n− 3), H2 is SU(n), or Sp(2a) with n = 2a, or Spin(9)
with n = 8; here G1 has top degree 2n− 2. Or G1 = SU(2n+ 1),
n ≥ 3, H1 is Sp(2n) or SO(2n+1), and H2 = SU(2n−1); here G1

has top degree 2n+1. Or H1\G1/H2 is one of G2\SU(7)/SU(5),
G2\ Spin(9)/SU(4), G2\ Spin(9)/Sp(4), or G2\ Spin(10)/SU(5);
here G1 has top degree 7, 8, 8, 8, respectively.

Proof. If G1 = SU(2), we have conclusion (1). So we can assume
that G1 has rank at least 2. Equivalently, G1 has at least two degrees.
There must be a simple factor H1 of H which kills at least one second-
largest degree of G1. (By Table 4.2, G1 has a unique second-largest
degree except when G1 is Spin(8), which has degrees 2, 4, 4, 6.)

Suppose that H1 is isomorphic to G1. If H1 acts nontrivially on
only one side of G1, then it acts by an isomorphism on that side of
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G1, and so H1 acts transitively on G1, contrary to Convention 3.4.
So H1 must act by an isomorphism on both sides of G1. Since all
automorphisms of G1 act as the identity on π3G1 = Z, the resulting
homomorphism π3(H1)Q → π3(G1)Q is zero. Also, since H1 is acting
with finite centralizer on both sides of G1, the rest of H cannot act on
G1, and so the whole homomorphism π3HQ → π3(G1)Q is zero. That
is, G1 contributes its degree 2 to M . Since G1 is not isomorphic to
SU(2), this contradicts our assumption that G1 contributes only its top
degree to M .

Thus H1 is not isomorphic to G1. We know that d(H1) ≤ d(G1) by
Lemma 4.3. Suppose that d(H1) = d(G1). By Lemma 4.3, (G1, H1) is
one of the pairs (Spin(2n),Spin(2n−1), (SU(2n),Sp(2n)), (Spin(7), G2),
(Spin(8), G2), or (E6, F4). In all these cases except (Spin(8),Spin(7)),
there is a unique conjugacy class of nontrivial homomorphisms H1 →
G1; moreover, even in the case (Spin(8),Spin(7)), all nontrivial homo-
morphisms are equivalent under automorphisms of Spin(8) and so they
all give the same homomorphism π3H1 → π3G1. Also, the centralizer
of H1 in G1 is finite in all cases. So, in all cases, if H1 acts nontrivially
on both sides of G1, then no other factor of H acts on G1, and the
homomorphism π3HQ → π3(G1)Q is zero. That is, G1 contributes its
degree 2 to M , contrary to our assumption that G1 contributes only its
top degree to M . Therefore H1 must act only on one side of G1. But
that implies, in all these cases, that H1 kills the top degree of G1. This
contradicts our assumption that G1 contributes its top degree to M .

So we must have d(H1) < d(G1). Since H1 kills at least one second-
largest degree of G1, d(H1) must be at least the second-largest degree of
G1. Therefore (G1, H1) must be one of the pairs listed in Lemma 5.2. If
H1 is isomorphic to SU(2), then G1 has rank 2 and we have conclusion
(2). We can now assume that H1 is not isomorphic to SU(2).

Next, we will show that H1 acts nontrivially on only one side of G1

in all the remaining cases. Suppose that H1 acts nontrivially on both
sides of G1. By Lemma 5.2, the centralizer of H1 on each side of G1 is at
most finite by A1. So any simple factor of H other than H1 which acts
nontrivially on G1 is isomorphic to SU(2). Thus H1 by itself must kill
all the degrees of G1 greater than 2 and less than the maximal degree
d(G1). This is clearly impossible for the pairs (G1, H1) on the second
part of Lemma 5.2’s list, since in these cases G1 contains at least one
degree in the interval (2, d(G1)) with greater multiplicity than H1 does.

So (G1, H1) is on the first part of Lemma 5.2’s list. Since H1 is not
isomorphic to SU(2), the list shows that all nontrivial homomorphisms
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H1 → G1 have Dynkin index 1. Since H1 acts nontrivially on both
sides of G1, it follows that the associated homomorphism π3(H1)Q →
π3(G1)Q is zero. That is, H1 does not kill the degree 2 of G1. Since
the whole group H does kill the degree 2 of G1, at least one of the two
nontrivial homomorphisms H1 → G1 must have centralizer containing
an A1 subgroup. By the first part of Lemma 5.2’s list, it follows that
the pair (G1, H1) is (Sp(2n),Sp(2n− 2)) for some n ≥ 3.

But for (G1, H1) equal to (Sp(2n),Sp(2n − 2)) with n ≥ 3, there is
a unique conjugacy class of nontrivial homomorphisms H1 → G1. Since
H1 acts nontrivially on both sides of G1, it follows that the associated
homomorphism π∗(H1)Q → π∗(G1)Q is zero. In particular, H1 does not
kill the second-largest degree, 2n − 2, of G1. This is a contradiction.
We have thus completed the proof that H1 acts nontrivially on only one
side of G1.

For spacesG1/H1 on the first part of Lemma 5.2’s list, this completes
the proof of conclusion (3). It remains to consider spaces G1/H1 on the
second part of Lemma 5.2’s list. To prove conclusion (4), we need to
identify another simple factor of H which acts on G1.

In several cases on the second part of Lemma 5.2’s list, G1 is isomor-
phic to Spin(2n), n ≥ 4. Here H1 is either Spin(2n− 2), Spin(2n− 3),
or, for n = 5, Spin(7) (with a different homomorphism to Spin(10))
or G2. In all these cases, the degree n of G1 is not killed by H1,
meaning that π2n−1(H1)Q → π2n−1(G1)Q is not surjective. So there
must be another simple factor H2 of H which acts on G1 such that
π2n−1(H2)Q → π2n−1(G1)Q/π2n−1(H1)Q is not zero. If n is odd, this
just means that π2n−1(H2)Q → π2n−1(G1)Q is not zero. On the other
hand, if n is even, then we can always assume, after automorphisms of
H1 and G1, that H1 → G1 is the standard inclusion. So, for n odd or
even, we can say that

π2n−1(H2)Q → π2n−1Spin(2n)Q/π2n−1Spin(2n− 1)Q ∼= Q
is not zero. Here H2 cannot be SU(2) since n ≥ 4, so H2 must act only
on the other side of G1 from H1, since the centralizer of H1 in G1 is
at most finite by A1. By Lemma 5.1, the space G1/H2 must be one of
Spin(2n)/SU(n), Spin(4a)/Sp(2a), Spin(8)/Spin(7), or Spin(16)/Spin(9).
If G1/H2 = Spin(8)/Spin(7), then we can replace H1 by H2 and we have
conclusion (3); so we can exclude that case. We have thus proved con-
clusion (4) for G1 = Spin(2n).

Next, there are several cases in the second part of Lemma 5.2’s list
where G1 = SU(2n+ 1), n ≥ 2. Here H1 is either Sp(2n), SO(2n+ 1),
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or, for n = 3, G2. In all these cases, H1 has only even degrees, and in
particular it does not kill the degree 2n − 1 of G1. So there must be
another simple factor H2 of H which kills the degree 2n−1 of G1. Here
H2 must act nontrivially only on the other side of G1 from H1, because
the centralizer of H1 in G1 is at most S1 by finite in these cases. It
is easy to read from Table 4.2 that any simple group H2 which maps
nontrivially to G1 = SU(2n + 1), n ≥ 2, and has 2n − 1 as a degree is
either SU(2n − 1), SU(2n), or SU(2n + 1). Here H2 = SU(2n + 1) is
excluded by Convention 3.4, which says that H does not act transitively
on G1. If H2 = SU(2n), then we can replace H1 by H2 and we have
conclusion (3). The remaining possibility is H2 = SU(2n− 1). We have
proved conclusion (4) for G1 = SU(2n+ 1).

The last case, from the second part of Lemma 5.2’s list, is where G1

is Spin(9) and H1 is the exceptional group G2. Here the degree 4 of
G1 is not killed by H1, so it must be killed by some other simple factor
H2 of H. The centralizer of H1 in G1 is finite by S1, so H2 must act
nontrivially only on the other side of G1 from H1. From Table 4.2, since
H2 has a degree 4 and maps nontrivially to Spin(9), H2 is one of Sp(4),
SU(4), Spin(7), Spin(8), or Spin(9). The case H2 = Spin(9) is excluded
by Convention 3.4, which says that H does not act transitively on G1.
If H2 is Spin(7) or Spin(8), then we can replace H1 by H2 and we have
conclusion (3). The remaining possibilities for H2 are Sp(4) and SU(4).
We have proved conclusion (4) for G1 = Spin(9). q.e.d.

6. Biquotients which are rational homology spheres

As an application of Theorems 4.8 and 5.3, we now classify all biquo-
tients which are simply connected rational homology spheres. The re-
sult seems surprising. In particular, the Gromoll-Meyer exotic 7-sphere
which is a biquotient [15] is the only such example in any dimension.
As mentioned in the introduction, Theorem 6.1 was found at the same
time by Kapovitch and Ziller [17].

Theorem 6.1. Any biquotient which is a simply connected ra-
tional homology sphere is either a homogeneous manifold, the Gromoll-
Meyer exotic 7-sphere which is a biquotient Sp(4)/SU(2), or a certain
4-connected 11-manifold with the integral homology groups of UT(S6)
which is a biquotient G2/SU(2).

The homogeneous manifolds which are simply connected rational ho-
mology spheres are the sphere Sn, the unit tangent bundle UT(S2n), the
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Wu 5-manifold SU(3)/SO(3) [7], the Berger 7-manifold Sp(4)/SU(2)
with π3M isomorphic to Z/10 [3], the 11-manifold G2/SU(2) with π3M
isomorphic to Z/3, and the two 11-manifolds G2/SO(3) with π3M iso-
morphic to Z/4 or Z/28.

The homogeneous spaces in Theorem 6.1 were classified by Onishchik
([14], Table 3, p. 185). The nontrivial biquotient G2/SU(2) was first
discovered by Eschenburg ([10], pp. 166-170). Kapovitch and Ziller have
shown that this biquotient G2/SU(2) is diffeomorphic to the connected
sum of UT(S6) with some homotopy 11-sphere [17]. It is not known
whether G2/SU(2) is actually diffeomorphic to UT(S6); one hopes for
a negative answer, which would be more interesting.

Before starting the proof of Theorem 6.1, we assemble some ele-
mentary facts about biquotients Sp(4)/H. In the following lemma, we
consider free actions of a group H on Sp(4) given by a homomorphism
H → Sp(4)2/Z(Sp(4)).

Lemma 6.2.

(1) There is no free action of SO(3) on Sp(4). Any free action of
SU(2) on Sp(4) is either trivial on one side of Sp(4), so that
Sp(4)/SU(2) is S7, UT(S4), or the Berger 7-manifold, or given by
the homomorphisms (V ⊕C2, V ⊕2) up to switching the two sides of
Sp(4), so that Sp(4)/SU(2) is the Gromoll-Meyer exotic 7-sphere
[15]. Here V denotes the standard representation of SU(2).

(2) Any free action of SU(2)2 on Sp(4) is given, up to switching the
two SU(2) factors and switching the two sides of Sp(4), by the
homomorphisms (V1 ⊕V2,C4) or (V1 ⊕C2, V ⊕2

2 ). Here V1 and V2

are the standard representations of the two SU(2) factors. In both
cases, the quotient Sp(4)/SU(2)2 is diffeomorphic to S4.

Proof. We only prove (1) here, the calculation for (2) being sim-
ilar. There are three conjugacy classes of nontrivial homomorphisms
SU(2) → Sp(4), V ⊕ C2, V ⊕2, and S3V , by Lemma 5.2. If SU(2)
acts trivially on one side of Sp(4), then Sp(4)/SU(2) is one of the
three homogeneous spaces mentioned in (1). So we can assume that
SU(2) acts nontrivially on both sides of Sp(4). Let H be SU(2) or
SU(2)/{±1} ∼= SO(3). The group H acts freely on Sp(4) if and only if
the two images of each nontrivial element of H in Sp(4) are not con-
jugate. In particular, the two homomorphisms SU(2) → Sp(4) must
be non-conjugate. If one homomorphism is V ⊕ C2 and the other is
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V ⊕2, then Gromoll and Meyer showed that SU(2) acts freely on Sp(4)
and that the quotient manifold is an exotic 7-sphere [15]. Otherwise,
SU(2) must act by S3V on one side and either V ⊕C2 or V ⊕2 on the
other. Then neither SU(2) nor SU(2)/{±1} acts freely on Sp(4), since
the images of the diagonal matrix (ζ3, ζ−1

3 ) in SU(2) under S3V and
V ⊕ C2 are conjugate, and likewise the images of the diagonal matrix
(ζ4, ζ−1

4 ) in SU(2) under S3V and V ⊕2 are conjugate. (Here ζn denotes
a primitive nth root of unity.) This proves (1). q.e.d.

Proof of Theorem 6.1. We write M = G/H according to Conven-
tion 3.4. Since M is a rational homology sphere, the odd-dimensional
rational homotopy of M has dimension 1. In more detail, S2n−1 has 1-
dimensional rational homotopy in dimension 2n− 1 and zero otherwise,
while S2n has 1-dimensional rational homotopy in dimensions 2n and
4n− 1, and zero otherwise. Since each simple factor of G contributes at
least dimension 1 to πoddMQ by Theorem 4.8, G must be simple. This
already makes the situation much more understandable; it would not
be clear at all without the analysis leading to Theorem 4.8.

If the simply connected rational homology sphere M has dimension
r at most 4, then it is automatically a homotopy sphere. It is therefore
not surprising to find that M is diffeomorphic to Sr for r ≤ 4. First,
for r = 2 we can just use that every homotopy 2-sphere is diffeomorphic
to S2. For r ≥ 3, we have π2MQ = 0, and so H has finite fundamental
group; equivalently, H is semisimple. For r = 3, π3M ∼= Z and π4MQ =
0, which implies that G has one more simple factor than H does. Since
G is simple, H = 1. Since M is a homotopy 3-sphere, G has degree 2
only, and so G is SU(2). Thus M is diffeomorphic to SU(2), that is, to
S3.

For r = 4, π2M = π3M = 0 and π4M ∼= Z, which implies that H is
simply connected and has one more simple factor than G does. Since G
is simple, H has two simple factors. By the rational homotopy groups of
M , G must contribute degree 4 toM while H contributes degree 2, and
nothing else. By Theorems 4.8 and 5.3, there is a simple factor H1 of
H such that either G/H1 is a homogeneous space diffeomorphic to S7,
or G/H1 is Spin(8)/G2 = S7 × S7, or (G,H1) is (Sp(4),SU(2)). Let H2

denote the other simple factor of H. If G/H1 = S7, then H2 has degree
2 only, so H2 is isomorphic to SU(2). In this case M is the quotient
of S7 by SU(2) acting freely by a homomorphism SU(2) → O(8). Such
a homomorphism is unique up to conjugacy, and so M is the standard
quotient S4. Next, ifG/H1 is Spin(8)/G2 = S7×S7, thenH2 has degrees
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2 and 4, and so H2 is isomorphic to Sp(4). But there is in fact no free
isometric action of Sp(4) on S7×S7, because the restriction of any action
of Sp(4) on S7 to the subgroup SU(2) = Sp(2) ⊂ Sp(4) has a fixed point.
(Either the associated 8-dimensional complex representation of Sp(4)
has a trivial summand, or it is the sum of two copies of the standard
representation of Sp(4) and hence restricts on SU(2) to V ⊕2 ⊕C4.)

For r = 4, it remains to consider the case (G,H1) = (Sp(4),SU(2)).
Here H2 has degree 2 only, and so H2 is isomorphic to SU(2). Thus M
is a biquotient Sp(4)/SU(2)2. By Lemma 6.2, M is diffeomorphic to S4.

We proceed to the case r ≥ 5. As mentioned earlier, we have
π2MQ = 0, and so H is semisimple. Since π3MQ = π4MQ = 0, H
has the same number of simple factors as G. Since G is simple, so is H.

One of the cases (1) to (4) in Theorem 4.8 must hold. Here (4)
is excluded since G is simple and H acts freely on G. In case (3),
M is the homogeneous space Spin(2n)/Spin(2n − 1) = S2n−1. In case
(2), M is one of the homogeneous spaces SU(2a)/Sp(2a) with a ≥ 2,
Spin(7)/G2 = S7, Spin(8)/G2 = S7 × S7, or E6/F4. Since M is a
rational homology sphere, considering the degrees of these homogeneous
spaces shows that M is either SU(4)/Sp(4) = Spin(6)/Spin(5) = S5 or
Spin(7)/G2 = S7.

There remains case (1) of Theorem 4.8, where G contributes its top
degree to M . In this case, one of conclusions (1) to (4) in Theorem 5.3
must hold. Here case (4) of Theorem 5.3 is excluded since H is simple.
In case (3), M is one of the homogeneous spaces listed in the first part
of Lemma 5.2. Since M is a rational homology sphere, the possibilities
are as listed in Theorem 6.1.

Case (1), G = SU(2), of Theorem 5.3 is excluded because we are con-
sidering biquotients M of dimension r ≥ 5. So there remains only case
(2). That is, H1 is SU(2), H is either H1 = SU(2) or H1/{±1} ∼= SO(3),
and M is a biquotient SU(3)/H, Sp(4)/H, or G2/H, of dimension 5,
7, or 11, respectively. The homogeneous spaces of this type are listed
in Lemma 5.2. So we can assume that H1 acts nontrivially on both
sides of G. Biquotients of this type (a rank-2 group divided by a rank-1
group) were classified by Eschenburg ([10], pp. 166–170), but I will give
my own proof since Eschenburg’s paper is not widely available.

First, suppose G = SU(3). Then there are two conjugacy classes of
nontrivial homomorphisms SU(2) → SU(3), V ⊕C and S2V , where V
denotes the standard representation of SU(2). Since H (which is SU(2)
or SO(3)) acts freely on G, the two images in SU(3) of any nontrivial
element of H are not conjugate in SU(3). So SU(2) must act by V ⊕C
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on one side of SU(3) and by S2V on the other. But, if we write ζa
for a primitive ath root of unity, the diagonal matrix (ζ3, ζ−1

3 ) in SU(2)
has images under both homomorphisms to SU(3) which are conjugate
to (ζ3, 1, ζ−1

3 ). So neither SU(2) nor SU(2)/{±1} can be acting freely.
Thus, the case G = SU(3) does not occur.

The case G = Sp(4) is covered by Lemma 6.2. Since SU(2) acts
nontrivially on both sides of Sp(4), M is the Gromoll-Meyer exotic 7-
sphere.

The last case to consider is where G is the exceptional group G2.
Here, as described in Lemma 5.2, there are 4 conjugacy classes of non-
trivial homomorphisms SU(2) → G2, which we identify by their Dynkin
index, 1, 3, 4, or 28. Using these Dynkin indices, we compute that the
composed representation SU(2) → G2 → U(7) must be: W1 = V ⊕2⊕C3,
W3 = S2V ⊕ V ⊕2, W4 = (S2V )⊕2 ⊕C, and W28 = S6V . In particular,
the homomorphisms W4 and W28 from SU(2) to G2 are trivial on {±1}
in SU(2), and the other two are not.

We are assuming that SU(2) acts nontrivially on both sides of G2.
Since the action is free for either SU(2) or SU(2)/{±1}, the two ho-
momorphisms SU(2) → G2 must be non-conjugate. There are now 6
cases to consider, corresponding to the 6 unordered pairs of distinct
homomorphisms Wi. Notice that the action of SU(2) on G2 is trivial
on {±1} if and only if the two homomorphisms send −1 to the same
element of the center of G2. The center of G2 is trivial, so the two
homomorphisms must both be trivial on −1. That is, SU(2) acts on G2

through its quotient SO(3) if and only if the two homomorphisms are
(W4,W28).

Given that SU(2) acts on G2 byWi on one side andWj on the other,
the action of SU(2) is free if and only if every nontrivial element of
SU(2) has non-conjugate images in G2 under the two homomorphisms.
Every element of SU(2) is conjugate to a diagonal element (x, x−1) with
x ∈ S1, so it suffices to consider those elements. Furthermore, it is
convenient to observe that two elements of G2 are conjugate if and only
if their images in U(7) are conjugate.

Using this, we can check whether each pair (Wi,Wj) of homomor-
phisms SU(2) → G2 gives a free action of SU(2) on G2 or not. Here
the image of x ∈ S1 ⊂ SU(2) in U(7) under the homomorphism Wi is
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conjugate to the diagonal matrix:

W1 : (x, x−1, x, x−1, 1, 1, 1)

W3 : (x, x−1, x, x−1, x2, 1, x−2)

W4 : (x2, x−2, x2, x−2, 1, 1, 1)

W28 : (x−6, x−4, x−2, 1, x2, x4, x6).

The result is that 5 of the 6 unordered pairs (Wi,Wj) do not give free
actions of SU(2) (or SO(3), in the case (W4,W28)) on G2. Indeed, the
following nontrivial elements x ∈ S1 have conjugate images (in U(7),
hence in G2) under the two representations.

(W1,W3) : x = −1
(W1,W4) : x = ζ3
(W1,W28) : x = ζ3
(W3,W28) : x = ζ5
(W4,W28) : x = ζ3

If SU(2) acts on G2 by (W3,W4), however, then we compute from
the above formulas that the two images of any nontrivial element x ∈
S1 ⊂ SU(2) are not conjugate in U(7), and hence not conjugate in G2.
So this is a free action of SU(2) on G2. Since the Dynkin indices 3 and
4 differ by 1, the resulting biquotient M = G2/SU(2) has π3M = 0.
Using the known homology of G2, we compute that the 11-manifold M
is 4-connected and has the integral homology groups of UT(S6).

Thus, the only biquotient G2/H with H isomorphic to SU(2) or
SO(3) and H acting nontrivially on both sides is the 4-connected 11-
manifold G2/SU(2), with SU(2) acting by (W3,W4). q.e.d.

7. Three Cheeger manifolds which are not homotopy
equivalent to biquotients

We now return to the proof of Theorem 2.1. Roughly in order
of increasing difficulty, we show in this section that the 16-manifolds
CaP2#CaP2, CP8#CaP2, and HP4#CaP2 are not homotopy equiv-
alent to biquotients.

Suppose that the 16-manifold CaP2#CaP2 is homotopy equivalent
to a biquotient M = G/H. As throughout the paper, we assume that
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M is written as a biquotient G/H which satisfies Convention 3.4. Here
H∗(M,Z) ∼= Z[x, y]/(xy = 0, x2 = y2), |x| = |y| = 8. This is a complete
intersection ring with 2 generators in degree 8 and 2 relations in degree
16. It follows that the rational homotopy groups ofM are isomorphic to
Q2 in dimensions 8 and 15, and otherwise 0 (the same as for S8 × S8).
So the map π2d−1HQ → π2d−1GQ must have 2-dimensional cokernel for
d = 8, 2-dimensional kernel for d = 4, and otherwise is an isomorphism.
Equivalently, we say that G contributes two degrees 8 to M , while H
contributes two degrees 4, and nothing else.

Each simple factor of G contributes at least one degree to M , by
Theorem 4.8, so G has at most two simple factors. Suppose first that G
is simple. We know that G contributes two degrees 8 toM , and nothing
else. One of the four cases in Theorem 4.8 must hold. Here (1) cannot
hold: if G contributes its maximal degree to M , that would have to be
8, but the maximal degree of each simple Lie group occurs only with
multiplicity 1. The remaining cases of the theorem are incompatible
with the fact that G contributes only degree 8 to M . Thus we have a
contradiction from the assumption that G is simple.

So G has two simple factors, G = G1×G2. (Here G2 does not denote
the exceptional group G2.) Each factor must contribute one degree 8 to
M , and nothing else. We can apply Theorem 4.8 to each factorGi. From
the degrees, it is clear that only cases (1) and (3) can occur. That is, for
1 ≤ i ≤ 2, either Gi contributes its maximal degree to M , which must
be 8, or else Gi = Spin(16) and there is a simple factor Hi

∼= Spin(15) of
H which acts nontrivially on exactly one side of Gi, with Gi/Hi = S15.
If Gi contributes its maximal degree to M , we can apply Theorem 5.3
to Gi. Cases (1) and (2) cannot arise, since the maximal degree of Gi

is 8. Therefore, by cases (3) and (4), there is a simple factor Hi of H
which acts nontrivially on exactly one side of Gi such that Gi/Hi is
one of the homogeneous spaces Spin(9)/Spin(8) = S8, SU(8)/SU(7) =
Sp(8)/Sp(6) = Spin(9)/Spin(7) = S15, Spin(9)/Spin(7) = UT(S8),
Spin(10)/Spin(8), Spin(10)/Spin(7), Spin(9)/G2, or Spin(10)/G2.

Since neither G nor H contributes any degree 2 to M , and each
simple group has exactly one degree 2 (that is, every simple group has
π3 = Z), H must have the same number of simple factors as G. Thus
H has two simple factors.

Let G1 and G2 denote the two simple factors of G. We know that
there is a simple factorH1 ofH such thatH1 acts nontrivially on exactly
one side of G1, with G1/H1 equal to either Spin(16)/Spin(15) = S15 or
one of the other homogeneous spaces listed above. We also know the
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analogous statement for G2, but a priori it is possible that the same
simple factor H1 of H plays the same role for both G1 and G2. But
then G = G1 ×G2 has two degrees 14 (if G1 and G2 are Spin(16)) or 7
(if G1 and G2 are SU(8)) or 6 (if G1 and G2 are Spin(9) or Spin(10)),
both of which must be killed by H, whereas the group H1 has only
one degree 14 or 6 or 7. So we can order the two simple factors of H
in such a way that Hi kills the relevant degree of Gi, both for i = 1
and for i = 2. By the proof of Theorem 5.3, it follows that Hi acts
nontrivially on exactly one side of Gi, with Gi/Hi equal to one of the
above homogeneous spaces, for i = 1 and for i = 2.

Since M has dimension only 16, both G1/H1 and G2/H2 must be
the homogeneous space Spin(9)/Spin(8) = S8. If H1 acts trivially on
G2, or also if H2 acts trivially on G1, then M is an S8-bundle over S8

and hence has signature zero, contradicting the fact thatM is homotopy
equivalent to CaP2#CaP2. So H1 acts nontrivially on G2 and H2 acts
nontrivially on G1. Since Hi has finite centralizer in Gi for i = 1, 2,
the action of H1 on G2 must be given by a nontrivial homomorphism
H1 → G2 on the other side of G2 from H2, and likewise for the action
of H2 on G1. Any nontrivial homomorphism Spin(8) → Spin(9) has
Dynkin index 1. So the homomorphism π3H → π3G, Z2 → Z2, is given
by a 2 × 2 matrix with both rows equal to (1,−1) or (−1, 1). Such
a matrix has zero determinant, and so π3MQ is not zero. Again, this
contradicts the fact that M is homotopy equivalent to CaP2#CaP2.
This completes the proof that CaP2#CaP2 is not homotopy equivalent
to a biquotient. In fact, the proof shows that CaP2#CaP2 is not even
rationally homotopy equivalent to a biquotient.

We now prove that CP8#CaP2 is not homotopy equivalent to a
biquotient M = G/K. Since G is simply connected, the boundary map
Z ∼= π2M → π1K in the long exact sequence is an isomorphism.

So, if we let H be the commutator subgroup of K, then H is simply
connected and K/H is isomorphic to S1. Let N be the 17-manifold
G/H. Since N is the natural S1-bundle over M � CP8#CaP2, we
compute that N has the integral cohomology ring of S8 × S9. To go
further, we use Wu’s theorem that the Stiefel-Whitney classes of the
tangent bundle of M are invariants of the homotopy type of M ([19],
Theorem 11.14). Because the 8-sphere in the Cayley plane has self-
intersection 1, the Stiefel-Whitney class w8(CaP2) ∈ H8(CaP2,F2) is
not zero. Therefore w8(CP8#CaP2) is not in the subgroup (H2)4 of
H8. By Wu’s theorem, the same holds for the manifold M which is
homotopy equivalent to CP8#CaP2. Since N is an S1-bundle over M ,
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it follows that w8(N) is not zero. We will use this later.
The cohomology ring of M is a complete intersection ring. The

degrees of the generators and relations determine the rational homotopy
groups of M , and hence of N . The result is that G contributes degrees
5 and 8 to N , while H contributes 4, and nothing else. Since every
simple factor of G contributes at least one degree to N , G has at most
2 simple factors. Also, since neither G nor H contributes degree 2, G
and H have the same number of simple factors.

Suppose first that G is simple. It follows that H is simple, too.
We can apply Theorem 4.8, and cases (2), (3), (4) are excluded since
G contributes degrees 5 and 8 to N and no more. Therefore case (1)
must hold; that is, G contributes its maximal degree to N . So G has
maximal degree 8. There is no simple group whose highest two degrees
are 5 and 8, so the second-largest degree of G must be killed by H.
Since G has exactly one degree 8, H must have maximal degree less
than 8. So, regardless of how H acts on G, (G,H) must be one of the
pairs in Lemma 5.2. From the list there, since we know that G adds
degrees 5 and 8 to M and H adds degree 4 and no more, we must have
G = Spin(10) and H = Spin(8). All nontrivial homomorphisms H → G
have Dynkin index 1. So if H acts nontrivially on both sides of G,
then G would contribute degree 2 to M , a contradiction. So H acts on
only one side of G and G/H is isomorphic to the homogeneous space
Spin(10)/Spin(8) = UT(S9).

Indeed, there is a free S1-action on UT(S9), with quotient the 8-
dimensional complex quadric Q8

C. This quadric has the rational homo-
topy type of CP8#CaP2. But no S1-quotient of N = UT(S9) can have
the homotopy type of CP8#CaP2. The point is that N is an S8-bundle
over S9. It follows that there is a sphere S8 in N which represents a
generator of H8(N,F2) and which has trivial normal bundle. There-
fore w8(N)|S8 = 0, and hence w8(N) = 0, contradicting our earlier
calculation that the Stiefel-Whitney class w8(N) is not zero.

So G must have two simple factors. Since G and H have the same
number of simple factors, H also has two simple factors. Each simple
factor of Gmust contribute exactly one degree to N ; we can assume that
G1 contributes degree 8 and G2 contributes degree 5. By Theorems 4.8
and 5.3, there is a simple factor H1 acting on exactly one side of G1 such
that G1/H1 is one of the homogeneous spaces Spin(9)/Spin(8) = S8,
Spin(16)/Spin(15) = SU(8)/SU(7) = Sp(8)/Sp(6) = Spin(9)/Spin(7)
= S15, Spin(9)/Spin(7) = UT(S8), Spin(10)/Spin(8), Spin(10)/Spin(7),
Spin(9)/G2, or Spin(10)/G2. Also, by the same theorems, there is a
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simple factor H2 acting on exactly one side of G2 such that G2/H2 is
one of the homogeneous spaces Spin(10)/Spin(9) = SU(5)/SU(4) = S9

or SU(6)/Sp(6).
IfH1 andH2 are the same factor ofH, this factor must be isomorphic

to Sp(6), and N is a biquotient of the form (Sp(8)×SU(6))/(Sp(6)×X).
Here X must be a simple group with degrees 2, 3, 4, 4, 6, but there is no
such group. So H1 and H2 are the two different simple factors of H.

From the degrees of N (or just by its dimension, which is only 17),
the homogeneous space G1/H1 must be Spin(9)/Spin(8) = S8 and the
homogeneous space G2/H2 must be either Spin(10)/Spin(9) = S9 or
SU(5)/SU(4) = S9. The 17-manifold N is not an S8-bundle over S9,
because we know that w8(N) is not zero. So H1 = Spin(8) must act
nontrivially on the second factor G2 of G. It follows that G2/H2 is
Spin(10)/Spin(9) = S9, not SU(5)/SU(4) = S9. Furthermore, H2 =
Spin(9) must act trivially on G1 = Spin(9), by Lemma 4.1. Thus N is
a biquotient of the form (Spin(9)× Spin(10))/(Spin(8)× Spin(9)) with
Spin(9) acting trivially on Spin(9) and Spin(8) acting nontrivially on
Spin(10). That is, N is a nontrivial S9-bundle over S8.

There are three conjugacy classes of nontrivial homomorphisms from
Spin(8) to Spin(10). They have the form W ⊕ R2, where W is ei-
ther the standard 8-dimensional real representation V of Spin(8) or
one of the two spin representations S− and S+. Thus N is the S9-
bundle S(W ⊕ R2) over S8, where W is the real vector bundle over
Spin(9)/Spin(8) = S8 corresponding to the representationW of Spin(8).
If W is the standard representation V of Spin(8), then the correspond-
ing vector bundle on S8 is the tangent bundle, which has zero Stiefel-
Whitney classes. It follows that the sphere bundle S(V ⊕R2) has zero
Stiefel-Whitney classes, contrary to what we know about N . So W
must be one of the two spin representations of Spin(8). Without loss
of generality, we can assume that W = S−; if instead W = S+, we
can apply an automorphism of order 2 of Spin(8) which switches the
isomorphism classes of the representations S− and S+ and does not
change the isomorphism class of the representation V and hence of the
standard inclusion Spin(8) → Spin(9). Once that is done, N is the
S9-bundle S(S− ⊕R2) over S8.

Finally, we need to analyze the free S1-action on N that gives M =
N/S1. By computing the centralizers of the homomorphisms that define
N , we see that the S1-action on N is defined by a homomorphism S1 →
Spin(9) together with a homomorphism from S1 to S1, the identity
component of the centralizer of Spin(8) in Spin(10). The homomorphism
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S1 → Spin(9) defines an action of S1 on S8 and also on the Spin(9)-
equivariant vector bundle S− over S9, while the homomorphism S1 →
S1, of the form z → zb for some integer b, defines the action of S1

on the trivial bundle R2 over S8. Since S1 is acting freely on N =
S(S− ⊕R2), it must act freely on both S(S−) = S15 and on S(R2) =
S1×S8. Since the S1-action on S8 must have a fixed point, the freeness
of the S1-action on S(R2) means that b = ±1. We compute that there
is a unique conjugacy class of homomorphisms S1 → Spin(9) which
give a free action of S1 on S(S−) = S15, namely the subgroup S1 =
Spin(2) ⊂ Spin(9). We can assume that b = 1, since changing b = −1 to
b = 1 clearly does not change the diffeomorphism class of the quotient
manifold M = N/S1. Thus we have uniquely described the biquotient
M .

But the biquotientM we have described is exactly the one which we
proved to be diffeomorphic to CP8#−CaP2 in Section 2. In particular,
it is not homotopy equivalent to CP8#CaP2. This completes the proof
that CP8#CaP2 is not homotopy equivalent to a biquotient.

We now show that HP4#CaP2 is not homotopy equivalent to a
biquotient M = G/H. Since M is 2-connected, H is simply connected,
by Lemma 3.1. The ringH∗(M,Z) is a complete intersection, and so the
degrees of its generators and relations determine the rational homotopy
groups of M . The result is that G contributes degrees 6 and 8 to M ,
while H contributes degrees 2 and 4, and no others. Since every simple
factor of G contributes at least one degree to M , G has at most 2
simple factors. Since H contributes exactly one degree 2, H has one
more simple factor than G has.

Suppose first that G is simple. We can apply Theorem 4.8, and cases
(2), (3), (4) are excluded because G contributes degrees 6 and 8 to M
and no more. Therefore case (1) must hold; that is, G contributes its
maximal degree to M . So G has maximal degree 8. By Table 4.2, G
must be one of Sp(8), Spin(9), Spin(10), or SU(8), which have degrees
respectively 2, 4, 6, 8, 2, 4, 6, 8, 2, 4, 5, 6, 8, or 2, 3, 4, 5, 6, 7, 8. It follows
that H has, correspondingly, degrees 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 5, or
2, 2, 3, 4, 4, 5, 7. But there is no semisimple group H with the last two
sets of degrees: one simple factor of H would have to have maximal
degree equal to an odd number d (5 or 7), hence would be isomorphic
to SU(d), and hence would have all degrees from 2 to d, which is not
the case here. Therefore G is isomorphic to Sp(8) or Spin(9), and H
has degrees 2, 2, 4, 4. Since H is simply connected, Table 4.2 shows that
H is isomorphic to Sp(4)2.
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We compute that there is no free action of Sp(4)2 on Spin(9), and
that the only free action of Sp(4)2 on Sp(8) is the one-sided action
given by the standard inclusion Sp(4)2 ⊂ Sp(8). So M is the homo-
geneous space Sp(8)/Sp(4)2. This homogeneous space has the rational
homotopy type of HP4#CaP2, but not the homotopy type, because
we compute that w4(Sp(8)/Sp(4)2) = 0 whereas w4(HP4#CaP2) �= 0,
since w4(HP4) �= 0. To compute these Stiefel-Whitney classes of the
homogeneous spaces Sp(8)/Sp(4)2 and HP4, we can use Singhof’s ap-
proach, which works more generally for biquotients [25]. Namely, say
for X = Sp(8)/Sp(4)2, the tangent bundle is

TX = sp(8)− sp(4)1 − sp(4)2
in the Grothendieck group of real vector bundles on X. The groups
H i(BSp(2n),F2) are zero for 0 < i < 4, and so

w4X = w4(sp(8))− w4(sp(4)1)− w4(sp(4)2).

This is zero because w4(sp(4)1)+w4(sp(4)2) is clearly some F2-multiple
of the sum of the generators ofH4(BSp(4)1,F2) and ofH4(BSp(4)2,F2),
while the generator of H4(BSp(8),F2) pulls back to the sum of the
generators of H4(BSp(4)1,F2) and H4(BSp(4)2,F2) and also pulls back
to zero in H4(X,F2).

Therefore G is not simple. It must have two simple factors, each
of which contributes exactly one degree to M . We know that H has
one more simple factor than G, so H has three simple factors. We can
write G = G1 × G2 where G1 contributes degree 6 to M and G2 con-
tributes degree 8 to M , and nothing else. By Theorems 4.8 and 5.3
applied to G1, there is a simple factor H1 of H such that either G1

is the exceptional group G2, H1 is SU(2), and H1 acts nontrivially
on G1, or H1 acts nontrivially on exactly one side of G1 and G1/H1

is isomorphic to one of the homogeneous spaces Spin(7)/Spin(6) =
G2/SU(3) = S6, Spin(12)/Spin(11) = SU(6)/SU(5) = Sp(6)/Sp(4) =
S11, Spin(7)/Spin(5) = UT(S6), Spin(8)/Spin(6), or Spin(8)/Spin(5).
Likewise, by Theorems 4.8 and 5.3 applied to the second factor G2,
there is a simple factor H2 of H which acts nontrivially on exactly
one side of G2 with G2/H2 isomorphic to one of the homogeneous
spaces Spin(9)/Spin(8) = S8, Spin(16)/Spin(15) = SU(8)/SU(7) =
Sp(8)/Sp(6) = Spin(9)/Spin(7) = S15, Spin(9)/Spin(7) = UT(S8),
Spin(10)/Spin(8), Spin(10)/Spin(7), Spin(9)/G2, or Spin(10)/G2.

We see that in all the above cases G1/H1 and G2/H2, H1 is never
isomorphic to H2, so in particular H1 is not the same simple factor of H



434 b. totaro

as H2. So, given G1/H1 and G2/H2, the known degrees ofM determine
the degrees of the remaining simple factor of H, H3. Let us say that a
given set of factors of G and H, for example G1 and H1, adds a degrees
d to M if the integer a is the number of degrees d in the given factors
of G minus the number of degrees d in the given factors of H. From the
above list, G1/H1 always adds exactly one degree 6 to M , while G2/H2

adds none; so, by the known degrees of M , H3 has no degree 6. The
only simple group with two degrees 4 is Spin(8), which also has a degree
6; so H3 has at most one degree 4.

Also, from the above list, G2/H2 adds no degree 3 to M , so the
cases where G1/H1 adds −1 degree 3 to M cannot occur (otherwise H3

would have −1 degrees 3). Thus G1/H1 is not Spin(7)/Spin(6) = S6,
G2/SU(3) = S6, or Spin(8)/Spin(6) = UT(S7). Thus G1/H1 and
G2/H2 both add zero degrees 3 toM , and so H3 has no degree 3. Next,
we observe that G1/H1 adds ≥ 0 degrees 4 to M , so the cases where
G2/H2 adds one degree 4 to M cannot occur (otherwise H3 would have
at least two degrees 4). Thus G2/H2 is not Spin(9)/G2 or Spin(10)/G2.
Next, G1/H1 adds zero degrees 5 to M , so in the cases where G2/H2

adds degree 5 to M , H3 must have a degree 5. Since H3 has no de-
gree 6, it follows that H3 is isomorphic to SU(5), contradicting the
fact that H3 has no degree 3. Thus G2/H2 is not Spin(10)/Spin(8) or
Spin(10)/Spin(7).

Finally, if G1/H1 is Spin(8)/Spin(5) = Spin(8)/Sp(4), then G1/H1

adds one degree 4 to M , and so, since H3 has at most one degree 4,
G2/H2 must add−1 degrees 4 toM ; that is, G2/H2 is Spin(9)/Spin(8) =
S8. Then H3 has degrees 2, 4 and so H3 is isomorphic to Sp(4). Here
M is a biquotient (Spin(8)× Spin(9))/(Sp(4)× Spin(8)× Sp(4)). Since
H2 = Spin(8) has finite centralizer in G2 = Spin(9), the two Sp(4) fac-
tors of H can only act on Spin(9) on the other side from Spin(8); so
Sp(4)2 acts on S8. Looking at the low-dimensional orthogonal represen-
tations of Sp(4)2 shows that this action must have a fixed point. Since
H acts freely on G, it follows that there is a subgroup of H isomorphic
to Sp(4)2 which acts freely on Spin(8). We compute, however, that
there is no free action of Sp(4)2 on Spin(8). This contradiction shows
that G1/H1 is not Spin(8)/Spin(5) = Spin(8)/Sp(4).

The only remaining possibilities for G1/H1 are those which add de-
gree 6 toM and nothing else: a homogeneous space Spin(12)/Spin(11) =
SU(6)/SU(5) = Sp(6)/Sp(4) = S11 or Spin(7)/Spin(5) = UT(S6) or
(G1, H1) = (G2, A1) (the exceptional group G2). Also, G2/H2 is either
Spin(9)/Spin(8) = S8, which adds one degree 8 and subtracts one de-
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gree 4 from M , or else a homogeneous space which adds degree 8 to M
and nothing else: Spin(16)/Spin(15) = SU(8)/SU(7) = Sp(8)/Sp(6) =
Spin(9)/Spin(7) = S15 or Spin(9)/Spin(7) = UT(S8). From the known
degrees ofM , it follows thatH3 has only degree 2 if G2/H2 is S8 and has
degrees 2, 4 otherwise. Therefore H3 is isomorphic to SU(2) if G2/H2 is
S8 and to Sp(4) otherwise.

Suppose that H3 is isomorphic to Sp(4); we will derive a contradic-
tion. First, we can easily exclude the possibility that the first factor
G1 is the exceptional group G2. The point is that, in this case, neither
H3 = Sp(4) nor H2 (from the list, above) has a nontrivial homomor-
phism to the first factor G1. Since H2 × H3 ⊂ H must act freely on
G1×G2, it follows thatH2×H3 acts freely on the second factor G2. This
is impossible because the list of possible spaces G2/H2 shows that H2

has rank 1 less than the second factor G2, and so H2×H3 = H2×Sp(4)
has rank 1 greater than the second factor G2. The impossibility here
follows from the fact that a finite-dimensional elliptic space X has the
alternating sum of its rational homotopy groups χπ(X) ≤ 0, by Halperin
([13], p. 434). So the first factor G1 is not the exceptional group G2.

We continue to assume that H3 is Sp(4). We know that G1/H1 is a
homogeneous space Spin(12)/Spin(11) = SU(6)/SU(5) = Sp(6)/Sp(4)
= S11 or Spin(7)/Spin(5) = UT(S6), and G2/H2 is a homogeneous
space Spin(16)/Spin(15) = SU(8)/SU(7) = Sp(8)/Sp(6) =
Spin(9)/Spin(7) = S15 or Spin(9)/Spin(7) = UT(S8). For each pos-
sible G1/H1 and G2/H2, we check immediately that either H1 must act
trivially on G2 or H2 must act trivially on G1. Here we use in par-
ticular that a simple factor of H must act trivially on a simple factor
of G isomorphic to it, by Lemma 4.1. It follows that the biquotient
(G1×G2)/(H1×H2) is either a G1/H1-bundle over G2/H2 or a G2/H2-
bundle over G1/H1. Now G1/H1 is either S11 or UT(S6), so it has
the 3-local homotopy type of S11; and likewise G2/H2 is either S15

or UT(S8), so it has the 3-local homotopy type of S15. Therefore the
biquotient (G1 × G2)/(H1 × H2) is 3-locally 11-connected. It follows
that the natural map

M = (G1 ×G2)/(H1 ×H2 × Sp(4)) → BSp(4)

is 3-locally 11-connected. Up to this point, any odd prime number
would serve in place of 3, but we now derive a contradiction by a 3-
local calculation. Since M is homotopy equivalent to HP4#CaP2, the
map π8M ⊗H8(M,Z) → Z is surjective. On the other hand, the map
π8BSp(4) ×H8(BSp(4),Z) → Z has image 6Z. Indeed, H8(BSp(4),Z)
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is generated by c22 and c4, and c22 is clearly zero for any Sp(4)-bundle
over S8, while c4 of such a bundle is a multiple of (4− 1)! = 6 by Bott
periodicity. Since the above mapM → BSp(4) is 3-locally 11-connected,
we have a contradiction.

That shows that H3 is not isomorphic to Sp(4). Therefore H3 is iso-
morphic to SU(2). In this case, we know that G2/H2 is Spin(9)/Spin(8)
= S8. Also, G1/H1 is either a homogeneous space Spin(12)/Spin(11)
= SU(6)/SU(5) = Sp(6)/Sp(4) = S11 or Spin(7)/Spin(5) = UT(S6), or
else G1 is the exceptional group G2 and H1 is SU(2) acting nontrivially
on G1, perhaps on both sides.

Since M = G/H is homotopy equivalent to HP4#CaP2, it has the
same Stiefel-Whitney classes as HP4#CaP2, by Wu ([19], Theorem
11.14). In particular, the sphere S8 in HP4#CaP2 has self-intersection
number 1, and so w8M is not in the subgroupH4(M,F2)2 ofH8(M,F2).
The biquotient N := (G1 ×G2)/(H1 ×H2) is a principal SU(2)-bundle
over M , so its stable tangent bundle is the pullback of that of M . It
follows that w8N ∈ H8(N,F2) is not zero.

Suppose thatG1 is the exceptional groupG2. ThenM is a biquotient
of the form (G2×Spin(9))/(SU(2)×Spin(8)×SU(2)). Here Spin(8) must
act trivially on G2, and so we can write

M = (G2 × S8)/SU(2)2.

Any torus acting by isometries on an even-dimensional sphere has a
fixed point, since every orthogonal representation of a torus is a sum of
2-dimensional representations and trivial representations. In particular,
a maximal torus in SU(2)2 has a fixed point on S8. Since SU(2)2 acts
freely on G2 × S8, this torus acts freely on G2. Since every element of
SU(2)2 is conjugate to an element of the torus, SU(2)2 acts freely on
G2. Thus M is a fiber bundle

S8 →M → G2/SU(2)2.

Since S8 has signature zero, it follows thatM has signature zero, contra-
dicting the fact that M is homotopy equivalent to HP4#CaP2. Thus
the first factor G1 is not the exceptional group G2.

So G1/H1 is either Spin(12)/Spin(11) = SU(6)/SU(5) =
Sp(6)/Sp(4) = S11 or Spin(7)/Spin(5) = UT(S6), and we know that
G2/H2 is Spin(9)/Spin(8) = S8. But since w8N is not zero, N is not an
S8-bundle over S11 or over UT(S6). So H2 = Spin(8) must act nontriv-
ially on G1. It follows that G1/H1 must be Spin(12)/Spin(11) = S11.
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Thus M is a biquotient of the form

(Spin(12)× Spin(9))/(Spin(11)× Spin(8)× SU(2)).

Here Spin(11) automatically acts trivially on Spin(9). So the biquo-
tient

N := (Spin(12)× Spin(9))/(Spin(11)× Spin(8))

is completely determined by the homomorphism Spin(8) → Spin(12),
which we know is nontrivial. (Since Spin(11) has finite centralizer on
Spin(12), the action of Spin(8) on Spin(12) must be on the other side
of Spin(12) from Spin(11).) There are 3 conjugacy classes of nontrivial
homomorphisms Spin(8) → Spin(12), each of the form W ⊕R4, where
the 8-dimensional real representation W of Spin(8) is either the stan-
dard representation V or one of the two spin representations. Thus
N is the S11-bundle S(W ⊕ R4) over Spin(9)/Spin(8) = S8. If W is
the standard representation V of Spin(8), then the associated rank-8
vector bundle over S8 has w8 = 0, and so the manifold N would have
w8N = 0, contradicting what we know. So W must be one of the two
spin representations of Spin(8). If necessary, we can apply an order-
2 automorphism to Spin(8), not changing the conjugacy class of the
standard inclusion Spin(8) → Spin(9), to arrange that W = S−.

Thus N is the S11-bundle S(S−⊕R4) over S8. The action of SU(2)
on N is given by a homomorphism SU(2) → Spin(9) together with a
homomorphism SU(2) → Spin(4), because Spin(4) is the identity com-
ponent of the centralizer of Spin(8) in Spin(12). The homomorphism
SU(2) → Spin(9) determines the action of SU(2) on S8 and on the
Spin(9)-equivariant vector bundle S− over S8, while the homomorphism
SU(2) → Spin(4) determines the action of SU(2) on R4. Since SU(2)
acts freely on N = S(S− ⊕R4), it must act freely on S(S−) = S15 and
on S(R4) = S3 × S8.

As in the proof that CP8#CaP2 is not homotopy equivalent to
a biquotient, we compute that there is only one free SU(2)-action on
S(S− ⊕ R4): SU(2) must act by SU(2) ∼= Spin(3) ⊂ Spin(9) on S8

and on the bundle S− over S8, and by the standard representation
VR on R4. Thus we have described the manifold M uniquely up to
diffeomorphism. But we showed in Section 2 that exactly this manifold
is diffeomorphic to HP4# − CaP2. In particular, it is not homotopy
equivalent to HP4#CaP2. This completes the proof that HP4#CaP2

is not homotopy equivalent to a biquotient.
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8. The Cheeger manifold CP4e#HP2e is not homotopy
equivalent to a biquotient

Finally, we will show that CP4e#HP2e, e ≥ 1, is not homotopy
equivalent to a biquotient M = G/K, completing the proof of Theo-
rem 2.1.

The cohomology ring of M is a complete intersection ring. The
degrees of its generators and relations determine the rational homotopy
groups of M . The result is that G contributes degrees 3 and 4e to
M and K contributes degrees 1 and 2, where the 1 means that the
abelianization of K is isomorphic to S1. Let H be the commutator
subgroup of K, and let N be the biquotient G/H; then M = N/S1.
Here G contributes degrees 3 and 4e to N , while H contributes degree
2. From the degree 2, it follows that H has one more simple factor than
G has. Also, by Theorem 4.8, each simple factor of G contributes at
least one degree to N . So G has at most two simple factors.

Furthermore, since M and CP4e#HP2e are homotopy equivalent,
they have the same Stiefel-Whitney classes, by Wu ([19], Theorem
11.14). In particular, w4M is not in the subgroup H2(M,F2)2 of H4(M,
F2). Since N is an S1-bundle over M , the stable tangent bundle of N
is the pullback of that of M , and so w4N is not zero.

Suppose first that G is simple. Since H has one more simple factor
than G, H has two simple factors. We know that G contributes degrees
3 and 4e to N , and nothing else. In Theorem 4.8, cases (2), (3), (4)
are incompatible with these degrees, and so case (1) must hold, that is,
G contributes its maximal degree to N . Thus G has maximal degree
4e. The only simple groups which have 3 as a degree are the groups
SU(n), n ≥ 3, and so G is isomorphic to SU(4e). Since G has exactly
one degree 4e, the known degrees of N imply that all simple factors of
H have maximal degree less than 4e.

Suppose that e ≥ 2. Then the second-largest degree, 4e − 1, of
G = SU(4e) is killed byH. LetH1 be a simple factor ofH which kills the
degree 4e− 1 of G. We know that H1 has maximal degree less than 4e,
and so it has maximal degree 4e−1, which implies that H1 is isomorphic
to SU(4e − 1). Any nontrivial homomorphism SU(4e − 1) → SU(4e)
has Dynkin index 1, and so H1 must act nontrivially on only one side
of G; otherwise SU(4e) would contribute degree 2 to N . So G/H1 is
isomorphic to the homogeneous space SU(4e)/SU(4e− 1) = S8e−1. But
then H1 kills the degree 3 of G, which should appear in M . Thus e ≥ 2
leads to a contradiction, for G simple.
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This leaves the case e = 1, with G simple. As shown above, G is
isomorphic to SU(4). Since G has degrees 2, 3, 4, the known degrees of
N imply that H has degrees 2, 2. So H is isomorphic to SU(2)2. Thus N
is a biquotient SU(4)/SU(2)2. Indeed, there is at least one such biquo-
tient, the homogeneous space UT(S5) = Spin(6)/Spin(4), which admits
a free S1-action. In that case, the quotient is the 4-dimensional complex
quadric Q4

C, which has the rational homotopy type of CP4#HP2. But
no biquotient N = SU(4)/SU(2)2 can have the homotopy type of an
S1-bundle over CP4#HP2, by the following argument. By Singhof’s
description of the tangent bundle of a biquotient [25], as used in the
previous section, we have

w4N = w4(su(4))− w4(su(2)1)− w4(su(2)2).

We then make the convenient calculation that

w4(su(n)) = 0 ∈ H4(BSU(n),F2)

for all even n. So w4N = 0, which contradicts what we know about N .
Thus we have a contradiction from the assumption that G is simple.

Thus G has two simple factors. We return to the general case, e ≥ 1.
Since H has one more simple factor than G, H has three simple factors.
Each simple factor of G contributes exactly one degree to N . We can
write G = G1 × G2 such that G1 contributes degree 3 to N and G2

contributes degree 4e, and nothing more. By Theorems 4.8 and 5.3
applied to G1, there is a simple factor H1 of H such that either G1/H1

is isomorphic to the homogeneous space SU(4)/Sp(4) = S5 (which is
the same as Spin(6)/Spin(5)) or (G1, H1) is (SU(3),SU(2)) for some
nontrivial action of SU(2) on SU(3).

If (G1, H1) is (SU(3),SU(2)) and SU(2) acts nontrivially on both
sides of SU(3), then the centralizers of both homomorphisms SU(2) →
SU(3) are finite or finite by S1, so no other simple factor of H can act
on G1. Moreover, the two nontrivial homomorphisms SU(2) → SU(3)
have Dynkin indices 1 and 4, by Lemma 5.2. So the map π3H1 → π3G1,
Z→ Z, is either zero or multiplication by 1−4 = −3 or 4−1 = 3. In any
case, it is not surjective, which contradicts the fact that π3H → π3G1

must be surjective, since π3M = 0. So any SU(2) factor of H acts
nontrivially on at most on one side of SU(3). Moreover, SU(2) factors
of H are the only ones that can act on G1 = SU(3) (SU(3) factors of
H are excluded by Lemma 4.1). At least one SU(2) factor must act
with Dynkin index 1 rather than 4, again using that π3H → π3G1 is
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surjective. Thus, if G1 is SU(3), then we can choose the simple factorH1

isomorphic to SU(2) such that G1/H1 is isomorphic to the homogeneous
space SU(3)/SU(2) = S5.

Thus, G1/H1 is either Spin(6)/Spin(5) = S5 or SU(3)/SU(2) = S5.
In both cases, G1/H1 adds degree 3 to N and nothing else. Next, we
can apply Theorems 4.8 and 5.3 to the second factor G2, giving a simple
factor H2 with certain properties. From the known degrees of N =
(G1×G2)/(H1×H2×H3), since G1/H1 adds degree 3 to N and nothing
else, G2/H2 cannot have any degrees with multiplicity < 0 (that is, any
degrees which occur in H2 more than in G2). Given this, Theorems 4.8
and 5.3 imply that either e = 1 and G2 is isomorphic to Sp(4), or there is
a simple factorH2 ofH such thatG2/H2 is isomorphic to a homogeneous
space Spin(8e)/Spin(8e−1) = SU(4e)/SU(4e−1) = Sp(4e)/Sp(4e−2) =
S8e−1, Spin(7)/G2 = S7 with e = 1, Spin(9)/Spin(7) = S15 with e = 2,
Spin(4e+1)/Spin(4e−1) = UT(S4e) with e ≥ 2, Spin(8)/G2 = S7 ×S7

with e = 1, Spin(9)/G2 with e = 2, Spin(4e+2)/Spin(4e−1) with e ≥ 2,
Spin(10)/Spin(7) via the spin representation with e = 2, or Spin(10)/G2

with e = 2. In these homogeneous spaces, it is clear that the simple
factor H2 of H is different from H1, which is SU(2) or Spin(5) = Sp(4).

When G2/H2 is one of the homogeneous spaces diffeomorphic to
S8e−1 or UT(S4e), then G2/H2 adds only one degree 4e to N and noth-
ing else. In those cases, the third factor H3 of H has degree 2 only,
so H3 is isomorphic to SU(2). When G2 is isomorphic to Sp(4), the
product of the two simple factors of H besides H1, H2×H3, has degrees
2, 2, and so H2 and H3 are both isomorphic to SU(2). When G2/H2 is
Spin(8)/G2 = S7 × S7 with e = 1 or Spin(9)/G2 with e = 2, then H3

has degrees 2, 4, and so H3 is isomorphic to Sp(4). Finally, the cases
where G2/H2 is Spin(4e+2)/Spin(4e− 1) with e ≥ 2, Spin(10)/Spin(7)
with e = 2, or Spin(10)/G2 with e = 2 cannot occur. In these cases,
part (4) of Theorem 5.3 implies that H must have a factor SU(2e+ 1),
which must be the third factor H3. But then H has one more degree 3
than G, contradicting the known degrees of N = G/H.

The cases where H3 is Sp(4) are easier to analyze, so we consider
them first. Either G2/H2 is Spin(8)/G2 = S7 ×S7 and e = 1, or G2/H2

is Spin(9)/G2 and e = 2. We know that G1/H1 is either SU(3)/SU(2) =
S5 or Spin(6)/Spin(5) = S5. By the known low-dimensional representa-
tions of H3 = Sp(4), the action of H3 on G1/H1 = S5 must have a fixed
point. So there is a subgroup of H1 ×H3 which projects isomorphically
to H3 = Sp(4) and which fixes a point in G1. Also, the exceptional
group G2 must act trivially on G1 (which is Spin(6) or SU(3)), so we
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have a subgroup of H isomorphic to Sp(4) × G2 which fixes a point in
G1. Since H acts freely on G, we have a free action of Sp(4) × G2 on
the second factor Spin(8) or Spin(9). We compute, however, that there
is no such free action.

So we must have H3 = SU(2). We know that G1/H1 is either
SU(3)/SU(2) = S5 or Spin(6)/Spin(5) = S5. Also, either e = 1, G2

is isomorphic to Sp(4) and H2 is isomorphic to SU(2), or G2/H2 is
a homogeneous space Spin(8e)/Spin(8e − 1) = SU(4e)/SU(4e − 1) =
Sp(4e)/Sp(4e− 2)=S8e−1, Spin(7)/G2=S7 with e=1, Spin(9)/Spin(7)
= S15 with e = 2, or Spin(4e+ 1)/Spin(4e− 1) = UT(S4e) with e ≥ 2.

We begin with the case where G1/H1 is SU(3)/SU(2) = S5 and
G2/H2 is Spin(8e)/Spin(8e − 1) = S8e−1. This turns out to be the
main step of the whole proof; most other cases will reduce to this one.
The group H2 = Spin(8e− 1) must act trivially on G1 = SU(3), and so
(G1×G2)/(H1×H2) is an S8e−1-bundle over S5. The manifoldM is the
quotient of this bundle by a free action of a group D := K/(H1 ×H2)
which is isogenous to S1 × SU(2). Since π2M is isomorphic to Z, π1D
is isomorphic to Z. So D is isomorphic to S1 × SU(2) or to U(2).

In dimensions less than 8e−1,M clearly has the homotopy type of a
homotopy quotient S5//D, or equivalently an S5-bundle over the classi-
fying space BD. HereD acts on S5 through the group U(3), coming from
the group G1 = SU(3) together with the centralizer S1 of H1 = SU(2)
in G1. From the cohomology ring ofM , the Euler class of the homomor-
phism D → U(3) must be the product of a generator of H2(BD,Z) with
an element of H4(BD,Z) that generates H4/(H2)2. Let L be the stan-
dard 1-dimensional complex representation of S1, V be the standard 2-
dimensional representation of SU(2), and E the standard 2-dimensional
representation of U(2). By inspecting the low-dimensional representa-
tions of D, it follows that the homomorphism D → U(3) is isomorphic
to L±1 ⊕La ⊗V if D is S1 ×SU(2), or to (detE)±1 ⊕ (detE)a ⊗E if D
is U(2), for some sign and some integer a. In particular, the subgroup
SU(2) = H3 of D acts on G1/H1 = SU(3)/SU(2) = S5 by the natural
inclusion SU(2) → SU(3), on the other side of G1 from H1.

It follows that the diagonal subgroup C in H1×H3 = SU(2)×SU(2)
has a fixed point in SU(3). So C must act freely on S8e−1. It follows
that C acts on S8e−1 by the real representation (VR)2e, where V is the
standard 2-dimensional complex representation of C = SU(2). In par-
ticular, the associated complex representation is a direct sum of copies
of V . By the Clebsch-Gordan formula, an irreducible complex repre-
sentation of SU(2)× SU(2) whose restriction to the diagonal subgroup
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is a sum of copies of V must be isomorphic to V1 ⊗ C or C ⊗ V2, the
standard representations of the two factors. Therefore the action of
H1 ×H3 = SU(2)× SU(2) on S8e−1 must be given by the real represen-
tation associated to the complex representation (V1)⊕j ⊕ (V3)⊕2e−j for
some 0 ≤ j ≤ 2e.

The manifold M can be written

M = (SU(3)× S8e−1)/((SU(2)2 ×R)/Z).

Here the subgroup Z of SU(2)2 ×R is generated by an element of the
form (±1,±1, 1), which we write as (e(a0), e(b0), 1) for a0, b0 ∈ {0, 1/2},
where e(t) := e2πit. The group (SU(2)2 ×R)/Z acts on SU(3)× S8e−1

via homomorphisms to SU(3)2/Z(SU(3)) and to SO(8e).
We can assume that the first factor SU(2) of (SU(2)2 ×R)/Z acts

on SU(3) by the standard inclusion on the left, while the second factor
SU(2) acts on SU(3) by the standard inclusion on the right. So the
two homomorphisms from R to SU(3) both map into the centralizer of
SU(2) in SU(3). That is, they map t ∈ R to the diagonal matrices

(e(at), e(at), e(−2at)), (e(bt), e(bt), e(−2bt))

for some a, b. Since the generator of the above subgroup Z in SU(2)2×R
must map into Z(SU(3)) ∼= Z/3 ⊂ SU(3)2, a and b must satisfy:

a+ a0 ∈ 1
3
Z

b+ b0 ∈ 1
3
Z

a+ a0 ≡ b+ b0 (mod Z).

The homomorphism SU(2)2 → SO(8e) is by the real representation
(V1)⊕j ⊕ (V2)⊕2e−j for some 0 ≤ j ≤ 2e. The centralizer of this homo-
morphism has identity component Sp(2j)×Sp(4e−2j), whose maximal
torus is conjugate to the center (S1)2e of U(2)2e. So we can assume that
R maps into this center. Thus the homomorphism from (SU(2)2×R)/Z
to SO(8e) is the direct sum of 2e homomorphisms to U(2), of the
form (A,B, t) → e(cit)A for 1 ≤ i ≤ j and (A,B, t) → e(dit)B for
j + 1 ≤ i ≤ 2e. Since this homomorphism is trivial on the subgroup Z,
the numbers ci and di must satisfy ci + a0 ∈ Z and di + b0 ∈ Z.

The action of (SU(2)2×R)/Z on SU(3)×S8e−1 is free. We compute
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that this means that, for all 1 ≤ i ≤ j,
a+ 2b− ci = ±1
a+ 2b+ ci = ±1
−2a+ 2b = ±1,

and for all j + 1 ≤ i ≤ 2e,

2a+ b− di = ±1
2a+ b+ di = ±1
−2a+ 2b = ±1.

If j ≥ 1, then the first two equations imply that either a + 2b = 0 and
ci = ±1, or a + 2b = ±1 and ci = 0, for 1 ≤ i ≤ j. In particular, ci
is an integer, which implies (since ci + a0 ∈ Z) that a0 is 0, not 1/2.
Since a+ a0 ∈ (1/3)Z, it follows in particular that a is 2-integral; since
−2a + 2b = ±1, b is not 2-integral. Therefore b0 is 1/2, not 0. But if
j ≤ 2e−1, then we would get the opposite conclusion (that a0 = 1/2 and
b0 = 1) from the second three equations above. So we must have either
j = 0 or j = 2e. After switching the two SU(2) factors if necessary,
we can assume that j = 2e. That is, SU(2)2 acts on S8e−1 by the real
representation (V1)2e. Also, we have a0 = 0 and b = 1/2, which means
that the subgroup Z of SU(2)2 ×R is generated by (1,−1, 1 ∈ R).

Since the second factor SU(2) acts only on SU(3), we can rewriteM
as

M = (S5 × S8e−1)/(SU(2)× S1).

Here we have used that the quotient of (SU(2)2 ×R)/Z by the second
copy of SU(2) is isomorphic to SU(2) × S1. The action of SU(2) × S1

on S8e−1 is given by the complex representation ⊕2e
i=1V ⊗ Lci . Also,

we compute that the action of SU(2) × S1 on S5 is by the complex
representation (V ⊗La+2b)⊕L−2a+2b. As computed above, −2a+2b =
±1. And either a + 2b = ±1 and ci = 0 for all i, or a + 2b = 0 and
ci = ±1 for all i.

In the first case, where ci = 0, we can conjugate the action of SU(2)×
S1 on S5 in the orthogonal group O(6) to make a + 2b and −2a + 2b
equal to 1, rather than −1. Thus M is the manifold

(S((V ⊗ L)⊕ L)× S(V ⊕2e))/(SU(2)× S1).

So M is a CP2-bundle over HP2e−1, and so M has signature zero,
contradicting that M is homotopy equivalent to CP4e#HP2e. In fact,
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this CP2-bundle over HP2e−1 is the one diffeomorphic to CP4e# −
HP2e, as mentioned in Section 2. In the second case, where ci = ±1,
we can conjugate the homomorphisms from SU(2)×S1 to the orthogonal
groups O(6) and O(8e) to make −2a+2b = 1 and ci = 1 for all i. Thus,
M is the manifold

(S(V ⊕ L)× S((V ⊗ L)⊕2e))/(SU(2)× S1).

Again, we showed in Section 2 that this manifold is diffeomorphic to
CP4e# −HP2e. Thus it is not homotopy equivalent to CP4e#HP2e.
This completes the proof that we cannot have G1/H1 equal to
SU(3)/SU(2) = S5 and G2/H2 equal to Spin(8e)/Spin(8e− 1) = S8e−1.

We next consider the case where G1/H1 is Spin(6)/Spin(5) = S5

and G2/H2 is Spin(8e)/Spin(8e − 1) = S8e−1. A first observation is
that Spin(5) has finite centralizer in Spin(6), and so all factors of K
except Spin(5) act on the other side of Spin(6) from Spin(5). Likewise,
all factors ofK except Spin(8e−1) act on the other side of Spin(8e) from
Spin(8e − 1). Furthermore, Spin(8e − 1) must act trivially on Spin(6),
and so (G1 ×G2)/(H1 ×H2) is an S8e−1-bundle over S5, which we can
write as (Spin(6)× S8e−1)/Spin(5).

The homomorphism K → (G×G)/Z(G) which defines the action of
K on G gives a homomorphism from D := K/(H1×H2) to SO(6). Here
D is isogenous to SU(2) × S1 and has fundamental group isomorphic
to Z, so D is isomorphic to SU(2) × S1 or to U(2). In dimensions less
than 8e−1, M has the homotopy type of the homotopy quotient S5//D
defined by the homomorphism D → SO(6), or equivalently of an S5-
bundle over the classifying space BD. From the cohomology ring of M ,
the Euler class of the homomorphism D → SO(6) must be the product
of some generator of H2(BD,Z) with some element of H4(BD,Z) which
generates H4/(H2)2. By inspecting the low-dimensional real represen-
tations of D, it follows that the homomorphism D → SO(6) is the real
representation associated to a 3-dimensional complex representation of
D. For D = S1×SU(2), write L for the standard 1-dimensional complex
representation of S1 and V for the standard 2-dimensional complex rep-
resentation of SU(2). In order to have an Euler class of the form above,
the homomorphism D → SO(6) must come from the complex represen-
tation L±1 + Lb ⊗ V for some sign and some integer b. The Euler class
of this representation is ±xy, where we let x = c1L and y = c2V + b2x2.
Likewise, for D = U(2), let E be the standard 2-dimensional complex
representation of D. In order to have an Euler class of the form above,
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the homomorphism D → SO(6) must come from the complex repre-
sentation (detE)±1 + (detE)d ⊗ E for some sign and some integer d.
The Euler class in H6BU(2) of this representation is ±uv, where we let
u = c1E and v = c2E + (d2 + d)u2.

Because the homomorphism D → SO(6) factors through U(3), we
can replace G1/H1 = Spin(6)/Spin(5) = S5 by G1/H1 = Ũ(3)/Ũ(2),
in our description of M as a biquotient. Here Ũ(n) denotes the in-
verse image of U(n) ⊂ SO(2n) in Spin(2n). We can then apply the
proof of Lemma 3.1 to replace Ũ(3) by SU(3). Thus we have re-
duced to the case where G1/H1 is SU(3)/SU(2) = S5 and G2/H2 is
Spin(8e)/Spin(8e− 1) = S8e−1. But we have shown that the latter
case cannot occur. This completes the proof that G2/H2 cannot be
Spin(8e)/Spin(8e − 1) = S8e−1, either when G1/H1 is Spin(6)/Spin(5)
or when it is SU(3)/SU(2).

The situation now is as follows. First, we know that G1/H1 is either
SU(3)/SU(2) = S5 or Spin(6)/Spin(5) = S5. Also, either e = 1, G2

is isomorphic to Sp(4) and H2 is isomorphic to SU(2), or G2/H2 is
a homogeneous space Spin(8e)/Spin(8e − 1) = SU(4e)/SU(4e − 1) =
Sp(4e)/Sp(4e− 2)=S8e−1, Spin(7)/G2=S7 with e=1, Spin(9)/Spin(7)
= S15 with e = 2, or Spin(4e + 1)/Spin(4e − 1) = UT(S4e) with e ≥
2. We have shown that G2/H2 cannot be Spin(8e)/Spin(8e − 1) =
S8e−1, either when G1/H1 is Spin(6)/Spin(5) or when it is SU(3)/SU(2).
Most other cases reduce to this one. Namely, suppose that G2/H2 is
diffeomorphic to a sphere S8e−1 (noting that in all these cases G2 ×
ZG2(H2) acts by isometries in the usual metric on the sphere), and
that H2 acts trivially on G1. Then we can simply replace G2/H2 by
Spin(8e)/Spin(8e − 1) = S8e−1 without changing the biquotient M .
Since G1 is small, namely Spin(6) or SU(3), the hypothesis that H2

acts trivially on G1 is automatic for most of the pairs G2/H2. Namely
this holds when there is no nontrivial homomorphism H2 → G1, or also
when H2 is isomorphic to G1 by Lemma 4.1.

The cases not covered by this argument are: G1/H1 is SU(3)/SU(2)
= S5 or Spin(6)/Spin(5) = S5, G2 is isomorphic to Sp(4), and H2

is isomorphic to SU(2), where e = 1; G1/H1 is Spin(6)/Spin(5) and
G2/H2 is SU(4)/SU(3) = S15 with H2 acting nontrivially on G1, where
e = 2; or G1/H1 is SU(3)/SU(2) or Spin(6)/Spin(5) and G2/H2 is
Spin(4e+ 1)/Spin(4e− 1) = UT(S4e) with e ≥ 2.

The last case, whereG2/H2 is UT(S4e) with e ≥ 2, is easy to exclude.
Let N = (G1 ×G2)/(H1 ×H2 ×H3), so that M = N/S1. Because the
groups involved in N are simply connected, N is 2-connected, and so



446 b. totaro

N is the S1-bundle over M corresponding to a generator of H2(M,Z).
Since M has the integral cohomology ring of CP4e#HP2e, the spectral
sequence of this S1-bundle shows that N has the integral cohomology
ring of S5×HP2e−1. Next, let Y be the manifold (G1×G2)/(H1×H2),
which is an SU(2)-bundle over N because H3 = SU(2). Because H2 =
Spin(4e − 1) and e ≥ 2, H2 acts trivially on G1 (which is Spin(6) or
SU(3)), and so Y is a UT(S4e)-bundle over S5. In particular, Y is 4-
connected. Also, the spectral sequence computing the cohomology of Y
collapses for degree reasons, and so Y has 2-torsion in its cohomology
because UT(S4e) does. But Y is also an S3-bundle over N , and because
Y is 4-connected, the Euler class of this bundle must be a generator of
H4(N,Z). So the spectral sequence of this S3-bundle shows that Y has
the integral cohomology ring of S5 × S8e−1. This contradicts the fact
that Y has 2-torsion. So this case, G2/H2 = UT(S4e) with e ≥ 2, does
not occur.

Next, we consider the case where G1/H1 is Spin(6)/Spin(5) = S5

and G2/H2 is SU(4)/SU(3) = S15, with SU(3) acting nontrivially on
Spin(6). Here e = 2. The point is that any nontrivial action of SU(3)
on S5 is isomorphic to the standard action, and hence is transitive. Thus
H acts transitively on the factor G1 of G, contrary to Convention 3.4.

This completes the proof that CP4e#HP2e is not homotopy equiv-
alent to a biquotient for all e ≥ 2. Ironically, the hardest case of all
is the case e = 1, that is, the proof that CP4#HP2 is not homotopy
equivalent to a biquotient.

For e = 1, it remains to consider the case where G1/H1 is either
SU(3)/SU(2) = S5 or Spin(6)/Spin(5) = S5, G2 is isomorphic to Sp(4),
and H2 is isomorphic to SU(2). Thus the 9-manifold N is a biquotient
of the form

(SU(3)× Sp(4))/SU(2)3

or
(Spin(6)× Sp(4))/(Spin(5)× SU(2)2),

where the first factor H1 acts by the standard inclusion on one side
of G1 and trivially on the other side of G1. Also, if H2 or H3 (each
isomorphic to SU(2)) acts trivially on G1, and acts trivially on one side
of Sp(4) and by the standard inclusion V ⊕ C2 on the other, then we
can replace the quotient Sp(4)/SU(2) = S7 by Spin(8)/Spin(7) = S7

and thus reduce to an earlier case. So we can assume that neither H2

nor H3 has these properties.
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We checked earlier that the Stiefel-Whitney class w4N is not zero.
It is convenient to observe now that the Pontrjagin class p1(HP2) is 2z,
where z is a generator of H4(HP2,Z) ∼= Z. Furthermore, Wu showed
that the first Pontrjagin class of a closed manifold is a homotopy in-
variant modulo 12 [28]. SinceM is homotopy equivalent to CP4#HP2,
p1M in H4M/(H2M)2 ∼= Z is 2 times the class of some generator, mod-
ulo 12. Therefore, the S1-bundle N over M has p1N equal to 2 times
the class of some generator of H4N ∼= Z, modulo 12.

Lemma 8.1. If H1 acts trivially on G2 = Sp(4), then H2 ×H3 =
SU(2)2 does not act freely on G2 = Sp(4).

Proof. Suppose that H1 acts trivially on Sp(4) and that H2 × H3

acts freely on Sp(4). Since H1 acts trivially on Sp(4), we can enlarge
G1 and H1 if necessary to make G1/H1 equal to Spin(6)/Spin(5), rather
than SU(3)/SU(2). The quotient Sp(4)/(H2 ×H3) is diffeomorphic to
S4, by Lemma 6.2. Also, N is the S5-bundle over S4 associated to some
homomorphism from H2 × H3 to Spin(6). By our knowledge of p1N ,
p1 of this S5-bundle in H4(S4,Z) ∼= Z must be 2 times some generator,
modulo 12.

By Lemma 6.2, after switching H2 and H3 and switching the two
sides of Sp(4) if necessary, H2×H3 acts on Sp(4) by either (V2⊕V3,C4)
or (V2 ⊕ C2, (V3)⊕2). First suppose that H2 × H3 acts on Sp(4) by
(V2 ⊕ V3,C4). The conjugacy classes of homomorphisms from H2 ×H3

to Spin(6) have complexifications: C6, (S2V2)⊕2, S2V2+S2V3, (S2V3)⊕2,
(V2)⊕2⊕C2, (V3)⊕2⊕C2, V2⊗V3⊕C2, S4V2⊕C, and S4V3⊕C. The given
homomorphism from H2×H3 to Spin(6) must have first Pontrjagin class
(that is, −c2 of the complexification) equal to 2 times some generator
of H4(S4,Z) modulo 12, where both c2V2 and c2V3 represent the same
generator of H4(S4,Z). This only occurs when the complexification is
(V2)⊕2 ⊕C2 or (V3)⊕2 ⊕C2. But then one of H2 or H3 acts trivially on
Spin(6) and by (V ⊕ C2,C4) on Sp(4), contrary to what we arranged
before the lemma.

It remains to consider the case where H2 × H3 acts on Sp(4) by
(V2⊕C2, (V3)⊕2). In this case, c2V3 represents a generator of H4(S4,Z),
while c2V2 is 2 times that generator. Going through the list of possible
homomorphisms from H2 ×H3 to Spin(6) again, we find that the only
one whose Pontrjagin class in H4(S4,Z) is 2 times a generator, modulo
12, is the one with complexification (V3)⊕2 ⊕ C2. But then H2 acts
trivially on Spin(6) and by (V ⊕C2,C4) on Sp(4), contrary to what we
arranged before the lemma. q.e.d.
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We can now show that the case where G1/H1 is Spin(6)/Spin(5) does
not occur. In this case, we know thatH1 acts trivially on Sp(4) (which is
isomorphic to Spin(5)), by Lemma 4.1. By Lemma 8.1, H2×H3 does not
act freely on Sp(4). On the other hand, the action of H2×H3 on Spin(6)
is given by one of the homomorphisms listed in the proof of Lemma 8.1.
In all these cases, we check immediately that the maximal torus (S1)2 in
H2×H3 = SU(2)2 has a fixed point in Spin(6)/Spin(5) = S5. Therefore,
there is a subgroup of H = H1 ×H2 ×H3 which projects isomorphically
to (S1)2 in H2 × H3 and which has a fixed point on Spin(6). Since
H acts freely on G, this subgroup acts freely on Sp(4). Since H1 acts
trivially on Sp(4), this means that the maximal torus (S1)2 in H2 ×H3

acts freely on Sp(4). Since every element of H2 × H3 is conjugate to
an element of the maximal torus, it follows that H2 ×H3 acts freely on
Sp(4), contradicting what we have shown. Thus the case where G1/H1

is Spin(6)/Spin(5) does not occur.
It remains to consider the case where G1/H1 is SU(3)/SU(2) = S5.

That is, the 9-manifold N is a biquotient

(SU(3)× Sp(4))/SU(2)3,

where we know that H1 acts on SU(3) by the standard inclusion on one
side, and we arranged earlier that neither H2 nor H3 acts trivially on
one side of Sp(4) and by the standard inclusion on the other.

Suppose first that H2 and H3 act trivially on G1. Then H2 ×H3
∼=

SU(2)2 must act freely on Sp(4). By Lemma 6.2, up to switching H2

and H3 and switching the two sides of Sp(4), H2 × H3 acts on Sp(4)
by the homomorphisms (V2 ⊕C2, V3 ⊕ V3) or (V2 ⊕ V3,C4). Therefore,
one of the factors H2 or H3 acts on Sp(4) trivially on one side and by
the standard inclusion on the other, as well as acting trivially on SU(3).
This contradicts what we arranged earlier.

So one of H2 or H3 acts nontrivially on G1. Switching H2 and H3

if necessary, we can assume that H2 acts nontrivially on G1. Since the
centralizer of H1 = SU(2) in G1 = SU(3) is only finite by S1, H2 acts
only on the other side of G1 from H1. It must act on G1 = SU(3) by
the homomorphism V2 ⊕C or S2V2. Thus the centralizer of H2 in G1

is at most finite by S1. Since the centralizer of H1 on the other side of
G1 is finite by S1, H3 = SU(2) must act trivially on G1. By what we
arranged earlier, it follows that H3 does not act on Sp(4) trivially on
one side and by the standard inclusion on the other.

Suppose first that H2 acts on SU(3) by V2 ⊕ C. Then H2 has a
fixed point on S5. More precisely, we see that the diagonal subgroup
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∆12
∼= SU(2) in H1 × H2 has a fixed point in SU(3). Since H3 acts

trivially on G1 = SU(3), it follows that ∆12 ×H3
∼= SU(2)2 acts freely

on G2 = Sp(4). By the classification of free actions of SU(2)2 on Sp(4) in
Lemma 6.2, together with the fact that H3 does not act trivially on one
side of Sp(4) and by the standard inclusion on the other, ∆12×H3 must
act on Sp(4) by the homomorphism V12⊕C2 on one side and V3⊕V3 on
the other. Here V12 denotes the standard representation of ∆12 = SU(2).
By the Clebsch-Gordan formula, it follows that H1 ×H2 ×H3 = SU(2)3

acts on Sp(4) by V1 ⊕C2 or V2 ⊕C2 on one side and by V3 ⊕ V3 on the
other. Switching H1 and H2 if necessary (which we can do, since they
act the same way on G1 = SU(3)), we can assume that H1 ×H2 ×H3 =
SU(2)3 acts on Sp(4) by V2 ⊕C2 on one side and by V ⊕2

3 on the other.
Thus, H1 acts trivially on Sp(4) and H2×H3 acts freely on Sp(4), which
contradicts Lemma 8.1.

Therefore H2 = SU(2) must act on G1 = SU(3) by the homomor-
phism S2V2. By Singhof’s description of the tangent bundle of a biquo-
tient [25], w4N is given by

w4N = w4su(3) + w4sp(4)− w4su(2)1 − w4su(2)2 − w4su(2)3
= w4su(3) + w4sp(4),

using that w4su(2) = 0 in H4(BSU(2),F2). Furthermore, we know that
H2 acts on one side of SU(3) by S2V2, and no other factor of H acts
on that side of SU(3). Since c2(S2V2) = 4c2V2, the generator c2 of
H4(BSU(3),F2) pulls back to 4c2V2 = 0 in H4(N,F2). Therefore

w4N = w4sp(4).

We know that H3 acts trivially on SU(3), so it must act freely on Sp(4).
Furthermore, we know that it does not act trivially on one side of Sp(4)
and by the standard inclusion V3 ⊕ C2 on the other. By Lemma 6.2,
H3 must act on at least one side of Sp(4) by the homomorphism V ⊕2

3 or
S3V3. These two homomorphisms have centralizers in Sp(4) which are
finite by S1 or finite, so no other simple factor ofH acts on the same side
of Sp(4). Since c2(V ⊕2

3 ) = 2c2V3 and c2(S3V3) = 10c2V3, the generator
c2 of H4(BSp(4),F2) pulls back to 2c2V3 or 10c2V3 in H4(N,F2), thus
to zero. Therefore

w4N = 0,

contradicting what we know about N . This completes the proof that
CP4#HP2 is not homotopy equivalent to a biquotient. Theorem 2.1 is
proved. q.e.d.
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